import logging from pathlib import Path from typing import Optional from typing import Sequence from typing import Union import warnings import os from io import BytesIO import torch from typing import Collection import os import torch import re from collections import OrderedDict from functools import cmp_to_key # @torch.no_grad() # def average_nbest_models( # output_dir: Path, # best_model_criterion: Sequence[Sequence[str]], # nbest: Union[Collection[int], int], # suffix: Optional[str] = None, # oss_bucket=None, # pai_output_dir=None, # ) -> None: # """Generate averaged model from n-best models # # Args: # output_dir: The directory contains the model file for each epoch # reporter: Reporter instance # best_model_criterion: Give criterions to decide the best model. # e.g. [("valid", "loss", "min"), ("train", "acc", "max")] # nbest: Number of best model files to be averaged # suffix: A suffix added to the averaged model file name # """ # if isinstance(nbest, int): # nbests = [nbest] # else: # nbests = list(nbest) # if len(nbests) == 0: # warnings.warn("At least 1 nbest values are required") # nbests = [1] # if suffix is not None: # suffix = suffix + "." # else: # suffix = "" # # # 1. Get nbests: List[Tuple[str, str, List[Tuple[epoch, value]]]] # nbest_epochs = [ # (ph, k, reporter.sort_epochs_and_values(ph, k, m)[: max(nbests)]) # for ph, k, m in best_model_criterion # if reporter.has(ph, k) # ] # # _loaded = {} # for ph, cr, epoch_and_values in nbest_epochs: # _nbests = [i for i in nbests if i <= len(epoch_and_values)] # if len(_nbests) == 0: # _nbests = [1] # # for n in _nbests: # if n == 0: # continue # elif n == 1: # # The averaged model is same as the best model # e, _ = epoch_and_values[0] # op = output_dir / f"{e}epoch.pb" # sym_op = output_dir / f"{ph}.{cr}.ave_1best.{suffix}pb" # if sym_op.is_symlink() or sym_op.exists(): # sym_op.unlink() # sym_op.symlink_to(op.name) # else: # op = output_dir / f"{ph}.{cr}.ave_{n}best.{suffix}pb" # logging.info( # f"Averaging {n}best models: " f'criterion="{ph}.{cr}": {op}' # ) # # avg = None # # 2.a. Averaging model # for e, _ in epoch_and_values[:n]: # if e not in _loaded: # if oss_bucket is None: # _loaded[e] = torch.load( # output_dir / f"{e}epoch.pb", # map_location="cpu", # ) # else: # buffer = BytesIO( # oss_bucket.get_object(os.path.join(pai_output_dir, f"{e}epoch.pb")).read()) # _loaded[e] = torch.load(buffer) # states = _loaded[e] # # if avg is None: # avg = states # else: # # Accumulated # for k in avg: # avg[k] = avg[k] + states[k] # for k in avg: # if str(avg[k].dtype).startswith("torch.int"): # # For int type, not averaged, but only accumulated. # # e.g. BatchNorm.num_batches_tracked # # (If there are any cases that requires averaging # # or the other reducing method, e.g. max/min, for integer type, # # please report.) # pass # else: # avg[k] = avg[k] / n # # # 2.b. Save the ave model and create a symlink # if oss_bucket is None: # torch.save(avg, op) # else: # buffer = BytesIO() # torch.save(avg, buffer) # oss_bucket.put_object(os.path.join(pai_output_dir, f"{ph}.{cr}.ave_{n}best.{suffix}pb"), # buffer.getvalue()) # # # 3. *.*.ave.pb is a symlink to the max ave model # if oss_bucket is None: # op = output_dir / f"{ph}.{cr}.ave_{max(_nbests)}best.{suffix}pb" # sym_op = output_dir / f"{ph}.{cr}.ave.{suffix}pb" # if sym_op.is_symlink() or sym_op.exists(): # sym_op.unlink() # sym_op.symlink_to(op.name) def _get_checkpoint_paths(output_dir: str, last_n: int = 5): """ Get the paths of the last 'last_n' checkpoints by parsing filenames in the output directory. """ # List all files in the output directory files = os.listdir(output_dir) # Filter out checkpoint files and extract epoch numbers checkpoint_files = [f for f in files if f.startswith("model.pt.e")] # Sort files by epoch number in descending order checkpoint_files.sort( key=lambda x: int(re.search(r"(\d+)", x).group()), reverse=True ) # Get the last 'last_n' checkpoint paths checkpoint_paths = [os.path.join(output_dir, f) for f in checkpoint_files[:last_n]] return checkpoint_paths @torch.no_grad() def average_checkpoints(output_dir: str, last_n: int = 5): """ Average the last 'last_n' checkpoints' model state_dicts. If a tensor is of type torch.int, perform sum instead of average. """ checkpoint_paths = _get_checkpoint_paths(output_dir, last_n) state_dicts = [] # Load state_dicts from checkpoints for path in checkpoint_paths: if os.path.isfile(path): state_dicts.append(torch.load(path, map_location="cpu")["state_dict"]) else: print(f"Checkpoint file {path} not found.") continue # Check if we have any state_dicts to average if not state_dicts: raise RuntimeError("No checkpoints found for averaging.") # Average or sum weights avg_state_dict = OrderedDict() for key in state_dicts[0].keys(): tensors = [state_dict[key].cpu() for state_dict in state_dicts] # Check the type of the tensor if str(tensors[0].dtype).startswith("torch.int"): # Perform sum for integer tensors summed_tensor = sum(tensors) avg_state_dict[key] = summed_tensor else: # Perform average for other types of tensors stacked_tensors = torch.stack(tensors) avg_state_dict[key] = torch.mean(stacked_tensors, dim=0) torch.save( {"state_dict": avg_state_dict}, os.path.join(output_dir, f"model.pt.avg{last_n}"), ) return avg_state_dict