File size: 5,842 Bytes
d39ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from scripts.constants import BASERECLOSS
import torch
from torch import nn
import torch.nn.functional as F
import pytorch_lightning as pl
from ldm.models.M_ModelAE_Cnn import CnnVae as LSFDisentangler

from main import instantiate_from_config

# from ldm.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.models.autoencoder import VQModel

from torchinfo import summary
import collections

import torchvision.utils as vutils


LSFLOCONFIG_KEY = "LSF_params"
BASEMODEL_KEY = "basemodel"

VQGAN_MODEL_INPUT = 'image'

DISENTANGLER_DECODER_OUTPUT = 'output'
DISENTANGLER_ENCODER_INPUT = 'in'
DISENTANGLER_CLASS_OUTPUT = 'class'
DISENTANGLER_ATTRIBUTE_OUTPUT = 'attribute'
DISENTANGLER_EMBEDDING = 'embedding'


class LSFVQVAE(VQModel):
    def __init__(self, **args):
        print(args)
        
        self.save_hyperparameters()

        LSF_args = args[LSFLOCONFIG_KEY]
        del args[LSFLOCONFIG_KEY]

        super().__init__(**args)

        self.freeze()

        ckpt_path = LSF_args.get('ckpt_path', None)
        if 'ckpt_path' in LSF_args:
            del LSF_args['ckpt_path']

        self.LSF_disentangler = LSFDisentangler(**LSF_args)
        LSF_args['ckpt_path'] = ckpt_path

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=[])
            print('Loaded trained model at', ckpt_path)

        self.verbose = LSF_args.get('verbose', False)
        # self.verbose = True

    def encode(self, x):
        encoder_out = self.encoder(x)
        disentangler_outputs = self.LSF_disentangler(encoder_out)
        disentangler_out = disentangler_outputs[DISENTANGLER_DECODER_OUTPUT]
        h = self.quant_conv(disentangler_out)
        quant, base_quantizer_loss, info = self.quantize(h)

        base_loss_dic = {'quantizer_loss': base_quantizer_loss}
        in_out_disentangler = {
            DISENTANGLER_ENCODER_INPUT: encoder_out,
        }
        in_out_disentangler = {**in_out_disentangler, **disentangler_outputs}

        return quant, base_loss_dic, in_out_disentangler, info

    def forward(self, input):
        quant, base_loss_dic, in_out_disentangler, _ = self.encode(input)
        dec = self.decode(quant)
        return dec, base_loss_dic, in_out_disentangler
    
    def forward_hypothetical(self, input):
        encoder_out = self.encoder(input)
        h = self.quant_conv(encoder_out)
        quant, base_hypothetical_quantizer_loss, info = self.quantize(h)
        dec = self.decode(quant)
        return dec, base_hypothetical_quantizer_loss

    def step(self, batch, batch_idx, prefix):
        x = self.get_input(batch, self.image_key)
        xrec, base_loss_dic, in_out_disentangler = self(x)

        if self.verbose:
            xrec_hypthetical, base_hypothetical_quantizer_loss = self.forward_hypothetical(x)
            hypothetical_rec_loss =torch.mean(torch.abs(x.contiguous() - xrec_hypthetical.contiguous()))
            self.log(prefix+"/base_hypothetical_rec_loss", hypothetical_rec_loss, prog_bar=False, logger=True, on_step=False, on_epoch=True)
            self.log(prefix+"/base_hypothetical_quantizer_loss", base_hypothetical_quantizer_loss, prog_bar=False, logger=True, on_step=False, on_epoch=True)
        
        # base losses
        true_rec_loss = torch.mean(torch.abs(x.contiguous() - xrec.contiguous()))
        self.log(prefix+  BASERECLOSS, true_rec_loss, prog_bar=False, logger=True, on_step=False, on_epoch=True)
        self.log(prefix+"/base_quantizer_loss", base_loss_dic['quantizer_loss'], prog_bar=False, logger=True, on_step=False, on_epoch=True)

        total_loss, LSF_losses_dict = self.LSF_disentangler.loss(in_out_disentangler[DISENTANGLER_DECODER_OUTPUT], in_out_disentangler[DISENTANGLER_ENCODER_INPUT], 
                                                                     batch['class'], in_out_disentangler['embedding'], in_out_disentangler['vae_mu'], in_out_disentangler['vae_logvar'])
        
        if self.verbose:
            self.log(prefix+"/disentangler_total_loss", total_loss, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            for i in LSF_losses_dict:
                if "_f1" in i:
                    self.log(prefix+"/disentangler_LSF_"+i, LSF_losses_dict[i], prog_bar=False, logger=True, on_step=True, on_epoch=True)

        self.log(prefix+"/disentangler_total_loss", total_loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
        for i in LSF_losses_dict:
            self.log(prefix+"/disentangler_LSF_"+i, LSF_losses_dict[i], prog_bar=True, logger=True, on_step=True, on_epoch=True)

        self.log(prefix+"/disentangler_learning_rate", self.LSF_disentangler.learning_rate, prog_bar=False, logger=True, on_step=False, on_epoch=True)

        # monitor for checkpoint saving is set on this
        self.log(prefix+"/rec_loss", LSF_losses_dict['L_rec'], prog_bar=True, logger=True, on_step=True, on_epoch=True)

        return total_loss
    
    def training_step(self, batch, batch_idx):
        return self.step(batch, batch_idx, 'train')


    def validation_step(self, batch, batch_idx):
        return self.step(batch, batch_idx, 'val')
    
    def configure_optimizers(self):
        lr = self.LSF_disentangler.learning_rate
        opt_ae = torch.optim.Adam(self.LSF_disentangler.parameters(), lr=lr)
        
        return [opt_ae], []

    def image2encoding(self, x):
        encoder_out = self.encoder(x)
        mu, logvar = self.LSF_disentangler.encode(encoder_out)
        z = self.LSF_disentangler.reparameterize(mu, logvar)
        return z, mu, logvar

    def encoding2image(self, z):
        disentangler_out = self.LSF_disentangler.decoder(z)
        h = self.quant_conv(disentangler_out)
        quant, base_quantizer_loss, info = self.quantize(h)
        rec = self.decode(quant)
        return rec