File size: 6,246 Bytes
d39ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Source: https://github.com/lissomx/MSP/blob/master/M_ModelAE_Cnn.py

import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np

class Encoder(nn.Module):
    # only for square pics with width or height is n^(2x)
    def __init__(self, image_size, nf, hidden_size=None, nc=3):
        super(Encoder, self).__init__()
        self.image_size = image_size
        self.hidden_size = hidden_size
        sequens = [
            nn.Conv2d(nc, nf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
        ]
        while(True):
            image_size = image_size/2
            if image_size > 4:
                sequens.append(nn.Conv2d(nf, nf * 2, 4, 2, 1, bias=False))
                sequens.append(nn.BatchNorm2d(nf * 2))
                sequens.append(nn.LeakyReLU(0.2, inplace=True))
                nf = nf * 2
            else:
                if hidden_size is None:
                    self.hidden_size = int(nf)
                sequens.append(nn.Conv2d(nf, self.hidden_size, int(image_size), 1, 0, bias=False))
                break
        self.main = nn.Sequential(*sequens)

    def forward(self, input):
        return self.main(input).squeeze(3).squeeze(2)


class Decoder(nn.Module):
    # only for square pics with width or height is n^(2x)
    def __init__(self, image_size, nf, hidden_size=None, nc=3):
        super(Decoder, self).__init__()
        self.image_size = image_size
        self.hidden_size = hidden_size
        sequens = [
            nn.Tanh(),
            nn.ConvTranspose2d(nf, nc, 4, 2, 1, bias=False),
        ]
        while(True):
            image_size = image_size/2
            sequens.append(nn.ReLU(True))
            sequens.append(nn.BatchNorm2d(nf))
            if image_size > 4:
                sequens.append(nn.ConvTranspose2d(nf * 2, nf, 4, 2, 1, bias=False))
            else:
                if hidden_size is None:
                    self.hidden_size = int(nf)
                sequens.append(nn.ConvTranspose2d(self.hidden_size, nf, int(image_size), 1, 0, bias=False))
                break
            nf = nf*2
        sequens.reverse()
        self.main = nn.Sequential(*sequens)

    def forward(self, z):
        z = z.unsqueeze(2).unsqueeze(2)
        output = self.main(z)
        return output

    def loss(self, predict, orig):
        batch_size = predict.shape[0]
        a = predict.view(batch_size, -1)
        b = orig.view(batch_size, -1)
        L = F.mse_loss(a, b, reduction='sum')
        return L


class CnnVae(nn.Module):
    def __init__(self, learning_rate, image_size, label_size, nf, hidden_size=None, nc=3):
        super(CnnVae, self).__init__()
        self.encoder = Encoder(image_size, nf, hidden_size, nc)
        self.decoder = Decoder(image_size, nf, hidden_size, nc)
        self.image_size = image_size
        self.nc = nc
        self.label_size = label_size
        self.hidden_size = self.encoder.hidden_size

        self.learning_rate = learning_rate

        self.fc1 = nn.Linear(self.hidden_size, self.hidden_size)
        self.fc2 = nn.Linear(self.hidden_size, self.hidden_size)

        self.M = nn.Parameter(torch.empty(label_size, self.hidden_size))
        nn.init.xavier_normal_(self.M)

    def encode(self, x):
        h = self.encoder(x)
        mu = self.fc1(h)
        logvar = self.fc2(h)
        return mu, logvar

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std

    def forward(self, x):
        # breakpoint()
        mu, logvar = self.encode(x)
        z = self.reparameterize(mu, logvar)
        prod = self.decoder(z)
        outputs = {'output': prod} # DISENTANGLER_DECODER_OUTPUT
        # outputs[DISENTANGLER_ATTRIBUTE_OUTPUT] = attr
        outputs['embedding'] = z
        outputs['vae_mu'] = mu
        outputs['vae_logvar'] = logvar
        # return prod, z, mu, logvar
        return outputs

    def _loss_vae(self, mu, logvar):
        # https://arxiv.org/abs/1312.6114
        # KLD = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
        KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
        return KLD
    
    def _loss_msp(self, label, z):

        labels_one_hot = F.one_hot(label, num_classes=self.label_size)
        labels_one_hot = labels_one_hot.to(dtype=torch.float32)
        labels_one_hot[labels_one_hot == 0.0] = -1

        L1 = F.mse_loss((z @ self.M.t()).view(-1), labels_one_hot.view(-1), reduction="none").sum()
        L2 = F.mse_loss((labels_one_hot @ self.M).view(-1), z.view(-1), reduction="none").sum()
        return L1 + L2, L1, L2

    def loss(self, prod, orgi, label, z, mu, logvar):
        L_rec = self.decoder.loss(prod, orgi)
        L_vae = self._loss_vae(mu, logvar)
        L_msp, L1_msp, L2_msp = self._loss_msp(label, z) 
        _msp_weight = orgi.numel()/(label.numel()+z.numel())
        Loss = L_rec + L_vae + L_msp * _msp_weight
        loss_dict = {'L1': L1_msp, 'L2': L2_msp, 'L_msp': L_msp,
                     'L_rec': L_rec, 'L_vae': L_vae}
        return Loss, loss_dict #L_rec.item(), L_vae.item(), L_msp.item()

    def acc(self, z, l):
        zl = z @ self.M.t()
        a = zl.clamp(-1, 1)*l*0.5+0.5
        return a.round().mean().item()

    def predict(self, x, new_ls=None, weight=1.0):
        z, _ = self.encode(x)
        if new_ls is not None:
            zl = z @ self.M.t()
            d = torch.zeros_like(zl)
            for i, v in new_ls:
                d[:,i] = v*weight - zl[:,i]
            z += d @ self.M
        prod = self.decoder(z)
        return prod

    def predict_ex(self, x, label, new_ls=None, weight=1.0):
        return self.predict(x,new_ls,weight)


        
    def get_U(self, eps=1e-5):

        from scipy import linalg, compress

        # get the null matrix N of M
        # such that U=[M;N] is orthogonal
        M = self.M.detach().cpu()
        A = torch.zeros(M.shape[1]-M.shape[0], M.shape[1])
        A = torch.cat([M, A])
        u, s, vh = linalg.svd(A.numpy())
        null_mask = (s <= eps)
        null_space = compress(null_mask, vh, axis=0)
        N = torch.tensor(null_space)
        return torch.cat([self.M, N.to(self.M.device)])