File size: 7,324 Bytes
642d5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

#based on https://github.com/CompVis/taming-transformers
 
import matplotlib.pyplot as plt
import seaborn as sns
import os
from pathlib import Path
import torchvision
import torch
import numpy as np
from PIL import Image
import json
import csv
import pandas as pd

from sklearn.metrics import ConfusionMatrixDisplay


def dump_to_json(dict, ckpt_path, name='results', get_fig_path=True):
    
    if get_fig_path:
        root = get_fig_pth(ckpt_path)
    else:
        root = ckpt_path
        if not os.path.exists(root):
            os.mkdir(root)

    with open(os.path.join(root, name+".json"), "w") as outfile:
        json.dump(dict, outfile)
        

def save_to_cvs(ckpt_path, postfix, file_name, list_of_created_sequence):
    if ckpt_path is not None:
        root = get_fig_pth(ckpt_path, postfix=postfix)
    else:
        root = postfix
        
    file = open(os.path.join(root, file_name), 'w')
    with file:  
        write = csv.writer(file)
        write.writerows(list_of_created_sequence)
        
def save_to_txt(arr, ckpt_path, name='results'):
    root = get_fig_pth(ckpt_path)
    with open(os.path.join(root, name+".txt"), "w") as outfile:
        outfile.write(str(arr))



def save_image_grid(torch_images, ckpt_path=None, subfolder=None, postfix="", nrow=10):
    if ckpt_path is not None:
        root = get_fig_pth(ckpt_path, postfix=subfolder)
    else:
        root = subfolder

    grid = torchvision.utils.make_grid(torch_images, nrow=nrow)
    grid = torch.clamp(grid, -1., 1.)

    grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w
    grid = grid.transpose(0,1).transpose(1,2).squeeze(-1)
    grid = grid.cpu().numpy()
    grid = (grid*255).astype(np.uint8)
    filename = "code_changes_"+postfix+".png"
    path = os.path.join(root, filename)
    os.makedirs(os.path.split(path)[0], exist_ok=True)
    Image.fromarray(grid).save(path, bbox_inches='tight')


def unprocess_image(torch_image):
    torch_image = torch.clamp(torch_image, -1., 1.)

    torch_image = (torch_image+1.0)/2.0 # -1,1 -> 0,1; c,h,w
    torch_image = torch_image.transpose(0,1).transpose(1,2).squeeze(-1)
    torch_image = torch_image.cpu().numpy()
    torch_image = (torch_image*255).astype(np.uint8)
    return torch_image

def save_image(torch_image, image_name, ckpt_path=None, subfolder=None):
    if ckpt_path is not None:
        root = get_fig_pth(ckpt_path, postfix=subfolder)
    else:
        root = subfolder

    torch_image = unprocess_image(torch_image)
    
    filename = image_name+".png"
    path = os.path.join(root, filename)
    os.makedirs(os.path.split(path)[0], exist_ok=True)
    fig = plt.figure()
    plt.imshow(torch_image[0].squeeze())
    fig.savefig(path,bbox_inches='tight',dpi=300)
    
    

def get_fig_pth(ckpt_path, postfix=None):
    figs_postfix = 'figs'
    postfix = os.path.join(figs_postfix, postfix) if postfix is not None else figs_postfix
    parent_path = Path(ckpt_path).parent.parent.absolute()
    fig_path = Path(os.path.join(parent_path, postfix))
    os.makedirs(fig_path, exist_ok=True)
    return fig_path

def plot_heatmap(heatmap, ckpt_path=None, title='default', postfix=None):
    if ckpt_path is not None:
        path = get_fig_pth(ckpt_path, postfix=postfix)
    else:
        path = postfix
        
    # show
    fig = plt.figure()
    ax = plt.imshow(heatmap, cmap='hot', interpolation='nearest')
    plt.tick_params(left=False, bottom=False)
    # cbar = ax.collections[0].colorbar
    cbar = plt.colorbar(ax)
    cbar.ax.tick_params(labelsize=15)
    plt.axis('off')
    plt.show()
    fig.savefig(os.path.join(path, title+ " heat_map.png"),bbox_inches='tight',dpi=300)
    pd.DataFrame(heatmap.numpy()).to_csv(os.path.join(path, title+ " heat_map.csv"))

def plot_heatmap_at_path(heatmap, save_path, ckpt_path=None, title='default', postfix=None):
    if ckpt_path is not None:
        path = get_fig_pth(ckpt_path, postfix=postfix)
    else:
        path = postfix
        
    # show
    fig = plt.figure()
    ax = plt.imshow(heatmap, cmap='hot', interpolation='nearest')
    plt.tick_params(left=False, bottom=False)
    # cbar = ax.collections[0].colorbar
    cbar = plt.colorbar(ax)
    cbar.ax.tick_params(labelsize=15)
    plt.axis('off')
    plt.show()
    fig.savefig(os.path.join(save_path, title+ "_heat_map.png"),bbox_inches='tight',dpi=300)
    pd.DataFrame(heatmap.numpy()).to_csv(os.path.join(save_path, title+ "_heat_map.csv"))

def plot_confusionmatrix(preds, classes, classnames, ckpt_path, postfix=None, title="", get_fig_path=True):
    fig, ax = plt.subplots(figsize=(30,30))
    preds_max = np.argmax(preds.cpu().numpy(), axis=-1)
    disp = ConfusionMatrixDisplay.from_predictions(classes.cpu().numpy(), preds_max, display_labels=classnames, normalize='true', xticks_rotation='vertical', ax=ax)
    disp.plot()
    
    if get_fig_path:
        fig_path = get_fig_pth(ckpt_path, postfix=postfix)
    else:
        fig_path = ckpt_path
        if not os.path.exists(fig_path):
            os.mkdir(fig_path)
    
    print(fig_path)
    fig.savefig(os.path.join(fig_path, title+ " heat_map.png"))

def plot_confusionmatrix_colormap(preds, classes, classnames, ckpt_path, postfix=None, title="", get_fig_path=True):
    fig, ax = plt.subplots(figsize=(30,30))
    preds_max = np.argmax(preds.cpu().numpy(), axis=-1)
    class_labels = list(range(len(classnames)))
    disp = ConfusionMatrixDisplay.from_predictions(classes.cpu().numpy(), preds_max, display_labels=class_labels, normalize='true', xticks_rotation='vertical', ax=ax, cmap='coolwarm')
    disp.plot()
    
    if get_fig_path:
        fig_path = get_fig_pth(ckpt_path, postfix=postfix)
    else:
        fig_path = ckpt_path
        if not os.path.exists(fig_path):
            os.mkdir(fig_path)
    
    print(fig_path)
    fig.savefig(os.path.join(fig_path, title+ " heat_map_coolwarm.png"))
    

class Histogram_plotter:
    def __init__(self, codes_per_phylolevel, n_phylolevels, n_embed, 
                 converter, 
                 indx_to_label,
                 ckpt_path, directory):
        self.codes_per_phylolevel = codes_per_phylolevel
        self.n_phylolevels = n_phylolevels
        self.n_embed = n_embed
        self.converter = converter
        self.ckpt_path = ckpt_path
        self.directory = directory
        self.indx_to_label = indx_to_label
        
    def plot_histograms(self, histograms, species_indx, is_nonattribute=False, prefix="species"):
        fig, axs = plt.subplots(self.codes_per_phylolevel, self.n_phylolevels, figsize = (5*self.n_phylolevels,30))
        for i, ax in enumerate(axs.reshape(-1)):
            ax.hist(histograms[i], density=True, range=(0, self.n_embed-1), bins=self.n_embed)
            
            if not is_nonattribute:
                code_location, level = self.converter.get_code_reshaped_index(i)
                ax.set_title("code "+ str(code_location) + "/level " +str(level))
            else:
                ax.set_title("code "+ str(i))
        
        plt.show()
        sub_dir = 'attribute' if not is_nonattribute else 'non_attribute'
        fig.savefig(os.path.join(get_fig_pth(self.ckpt_path, postfix=self.directory+'/'+sub_dir), "{}_{}_{}_hostogram.png".format(prefix, species_indx, self.indx_to_label[species_indx])),bbox_inches='tight',dpi=300)
        plt.close(fig)