File size: 11,925 Bytes
d39ef0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import torch.nn.functional as F
import pytorch_lightning as pl

from ldm.util import instantiate_from_config

from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer


class VQModelDual(pl.LightningModule):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 n_embed,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image1_key="image1",
                 image2_key="image2",
                 colorize_nlabels=None,
                 monitor=None,
                 remap=None,
                 sane_index_shape=False,  # tell vector quantizer to return indices as bhw
                 ):
        super().__init__()
        self.image1_key = image1_key
        self.image2_key = image2_key

        ## model 1
        self.encoder1 = Encoder(**ddconfig)
        self.decoder1 = Decoder(**ddconfig)
        self.quantize1 = VectorQuantizer(n_embed, embed_dim, beta=0.25,
                                    remap=remap, sane_index_shape=sane_index_shape)
        self.quant_conv1= torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
        self.post_quant_conv1 = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
        self.loss1 = instantiate_from_config(lossconfig)

        ## model 2
        self.encoder2 = Encoder(**ddconfig)
        self.decoder2 = Decoder(**ddconfig)
        self.quantize2 = VectorQuantizer(n_embed, embed_dim, beta=0.25,
                                    remap=remap, sane_index_shape=sane_index_shape)
        self.quant_conv2 = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
        self.post_quant_conv2 = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
        self.loss2 = instantiate_from_config(lossconfig)


        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

        if colorize_nlabels is not None:
            assert type(colorize_nlabels)==int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False)
        print(f"Restored from {path}")

    def encode(self, x1, x2):
        h1 = self.encoder1(x1)
        h1 = self.quant_conv1(h1)
        quant1, emb_loss1, info1 = self.quantize1(h1)
        h2 = self.encoder2(x2)
        h2 = self.quant_conv2(h2)
        quant2, emb_loss2, info2 = self.quantize2(h2)
        return quant1, emb_loss1, info1, quant2, emb_loss2, info2

    def decode(self, quant1, quant2):
        quant1 = self.post_quant_conv1(quant1)
        dec1 = self.decoder1(quant1)
        quant2 = self.post_quant_conv2(quant2)
        dec2 = self.decoder2(quant2)
        return dec1, dec2

    # def decode_code(self, code_b, model_key):
    #     quant_b = self.quantize[model_key].embed_code(code_b)
    #     dec = self.decode(quant_b,model_key)
    #     return dec

    def forward(self, input1, input2):
        # quant, diff, _ = self.encode(input, model_key)
        quant1, diff1, _, quant2, diff2, _ = self.encode(input1, input2)
        dec1, dec2 = self.decode(quant1, quant2)
        # dec = self.decode(quant, model_key)
        return dec1, dec2, diff1, diff2

    def get_input(self, batch, k):
        x = batch[k]
        if len(x.shape) == 3:
            x = x[..., None]
        # x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
        x = x.to(memory_format=torch.contiguous_format)
        return x.float()

    def training_step(self, batch, batch_idx, optimizer_idx):
        x1 = self.get_input(batch, self.image1_key)
        x2 = self.get_input(batch, self.image2_key)
        xrec1, xrec2, qloss1, qloss2 = self.forward(x1, x2)
        

        if optimizer_idx == 0:
            # autoencoder 1
            aeloss1, log_dict_ae1 = self.loss1(qloss1, x1, xrec1, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(model_key=1), split="train")

            self.log("train/aeloss1", aeloss1, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae1, prog_bar=False, logger=True, on_step=True, on_epoch=True)

            # autoencoder 2
            aeloss2, log_dict_ae2 = self.loss2(qloss2, x2, xrec2, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(model_key=2), split="train")

            self.log("train/aeloss2", aeloss2, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae2, prog_bar=False, logger=True, on_step=True, on_epoch=True)

            return aeloss1 + aeloss2

        if optimizer_idx == 1:
            # discriminator 1
            discloss1, log_dict_disc1 = self.loss1(qloss1, x1, xrec1, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(model_key=1), split="train")
            self.log("train/discloss1", discloss1, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc1, prog_bar=False, logger=True, on_step=True, on_epoch=True)

            # discriminator 2
            discloss2, log_dict_disc2 = self.loss2(qloss2, x2, xrec2, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(model_key=2), split="train")
            self.log("train/discloss", discloss2, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc2, prog_bar=False, logger=True, on_step=True, on_epoch=True)

            return discloss1 + discloss2

    def validation_step(self, batch, batch_idx):

        x1 = self.get_input(batch, self.image1_key)
        x2 = self.get_input(batch, self.image2_key)
        xrec1, xrec2, qloss1, qloss2 = self.forward(x1, x2)
        

        aeloss1, log_dict_ae1 = self.loss1(qloss1, x1, xrec1, 0, self.global_step,
                                            last_layer=self.get_last_layer(model_key=1), split="val")
        aeloss2, log_dict_ae2 = self.loss2(qloss2, x2, xrec2, 0, self.global_step,
                                            last_layer=self.get_last_layer(model_key=2), split="val")

        discloss1, log_dict_disc1 = self.loss1(qloss1, x1, xrec1, 1, self.global_step,
                                            last_layer=self.get_last_layer(model_key=1), split="val")
        discloss2, log_dict_disc2 = self.loss2(qloss2, x2, xrec2, 1, self.global_step,
                                            last_layer=self.get_last_layer(model_key=2), split="val")

        rec_loss1 = log_dict_ae1["val/rec_loss"]
        rec_loss2 = log_dict_ae2["val/rec_loss"]
        self.log("val/rec_loss1", rec_loss1,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        self.log("val/rec_loss2", rec_loss2,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        self.log("val/aeloss1", aeloss1,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        self.log("val/aeloss2", aeloss2,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        self.log_dict(log_dict_ae1)
        self.log_dict(log_dict_disc1)
        self.log_dict(log_dict_ae2)
        self.log_dict(log_dict_disc2)
        return self.log_dict

    def configure_optimizers(self):
        lr = self.learning_rate
        opt_ae = torch.optim.Adam(list(self.encoder1.parameters())+
                                  list(self.decoder1.parameters())+
                                  list(self.quantize1.parameters())+
                                  list(self.quant_conv1.parameters())+
                                  list(self.post_quant_conv1.parameters())+
                                  list(self.encoder2.parameters())+
                                  list(self.decoder2.parameters())+
                                  list(self.quantize2.parameters())+
                                  list(self.quant_conv2.parameters())+
                                  list(self.post_quant_conv2.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(list(self.loss1.discriminator.parameters())+
                                    list(self.loss2.discriminator.parameters()),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self, model_key):
        if model_key==1:
            return self.decoder2.conv_out.weight
        elif model_key==2:
            return self.decoder2.conv_out.weight

    def log_images(self, batch, **kwargs):
        log = dict()

        
        x1 = self.get_input(batch, self.image1_key)
        x2 = self.get_input(batch, self.image2_key)
        x1 = x1.to(self.device)
        x2 = x2.to(self.device)

        xrec1, xrec2, _, _ = self.forward(x1, x2)

        ## log 1
        if x1.shape[1] > 3:
            # colorize with random projection
            assert xrec1.shape[1] > 3
            x1 = self.to_rgb(x1)
            xrec1 = self.to_rgb(xrec1)
        log["inputs1"] = x1
        log["reconstructions1"] = xrec1


        ## log 2
        if x2.shape[1] > 3:
            # colorize with random projection
            assert xrec2.shape[1] > 3
            x2 = self.to_rgb(x2)
            xrec2 = self.to_rgb(xrec2)
        log["inputs2"] = x2
        log["reconstructions2"] = xrec2
        return log

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
        return x
    
class VQModelDualInterface(VQModelDual):
    def __init__(self, embed_dim, *args, **kwargs):
        super().__init__(embed_dim=embed_dim, *args, **kwargs)
        self.embed_dim = embed_dim

    def encode(self, x1, x2):

        h1 = self.encoder1(x1)
        h1 = self.quant_conv1(h1)

        h2 = self.encoder2(x2)
        h2 = self.quant_conv2(h2)

        return h1, h2

    def decode(self, h1, h2, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant1, emb_loss1, info1 = self.quantize1(h1)
            quant2, emb_loss2, info2 = self.quantize2(h2)
        else:
            quant1 = h1
            quant2 = h2

        quant1 = self.post_quant_conv1(quant1)
        dec1 = self.decoder1(quant1)

        quant2 = self.post_quant_conv2(quant2)
        dec2 = self.decoder2(quant2)

        return dec1, dec2
    
    def decode1(self, h1, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant1, emb_loss1, info1 = self.quantize1(h1)
        else:
            quant1 = h1
        quant1 = self.post_quant_conv1(quant1)
        dec1 = self.decoder1(quant1)
        return dec1
    
    def decode2(self, h2, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant2, emb_loss2, info2 = self.quantize2(h2)
        else:
            quant2 = h2
        quant2 = self.post_quant_conv2(quant2)
        dec2 = self.decoder2(quant2)
        return dec2