Spaces:
Running
Running
File size: 15,505 Bytes
d39ef0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
"""
Reference: Concept Whitening for Interpretable Image Recognition
- Paper: https://arxiv.org/pdf/2002.01650.pdf
- Code: https://github.com/zhiCHEN96/ConceptWhitening
"""
import torch.nn
import torch.nn.functional as F
from torch.nn import Parameter
# import extension._bcnn as bcnn
__all__ = ['iterative_normalization', 'IterNorm']
class iterative_normalization_py(torch.autograd.Function):
@staticmethod
def forward(ctx, *args, **kwargs):
X, running_mean, running_wmat, nc, ctx.T, eps, momentum, training = args
# change NxCxHxW to (G x D) x(NxHxW), i.e., g*d*m
ctx.g = X.size(1) // nc
x = X.transpose(0, 1).contiguous().view(ctx.g, nc, -1)
_, d, m = x.size()
saved = []
if training:
# calculate centered activation by subtracted mini-batch mean
mean = x.mean(-1, keepdim=True)
xc = x - mean
saved.append(xc)
# calculate covariance matrix
P = [None] * (ctx.T + 1)
P[0] = torch.eye(d).to(X).expand(ctx.g, d, d)
Sigma = torch.baddbmm(eps, P[0], 1. / m, xc, xc.transpose(1, 2))
# reciprocal of trace of Sigma: shape [g, 1, 1]
rTr = (Sigma * P[0]).sum((1, 2), keepdim=True).reciprocal_()
saved.append(rTr)
Sigma_N = Sigma * rTr
saved.append(Sigma_N)
for k in range(ctx.T):
P[k + 1] = torch.baddbmm(1.5, P[k], -0.5, torch.matrix_power(P[k], 3), Sigma_N)
saved.extend(P)
wm = P[ctx.T].mul_(rTr.sqrt()) # whiten matrix: the matrix inverse of Sigma, i.e., Sigma^{-1/2}
running_mean.copy_(momentum * mean + (1. - momentum) * running_mean)
running_wmat.copy_(momentum * wm + (1. - momentum) * running_wmat)
else:
xc = x - running_mean
wm = running_wmat
xn = wm.matmul(xc)
Xn = xn.view(X.size(1), X.size(0), *X.size()[2:]).transpose(0, 1).contiguous()
ctx.save_for_backward(*saved)
return Xn
@staticmethod
def backward(ctx, *grad_outputs):
grad, = grad_outputs
saved = ctx.saved_variables
xc = saved[0] # centered input
rTr = saved[1] # trace of Sigma
sn = saved[2].transpose(-2, -1) # normalized Sigma
P = saved[3:] # middle result matrix,
g, d, m = xc.size()
g_ = grad.transpose(0, 1).contiguous().view_as(xc)
g_wm = g_.matmul(xc.transpose(-2, -1))
g_P = g_wm * rTr.sqrt()
wm = P[ctx.T]
g_sn = 0
for k in range(ctx.T, 1, -1):
P[k - 1].transpose_(-2, -1)
P2 = P[k - 1].matmul(P[k - 1])
g_sn += P2.matmul(P[k - 1]).matmul(g_P)
g_tmp = g_P.matmul(sn)
g_P.baddbmm_(1.5, -0.5, g_tmp, P2)
g_P.baddbmm_(1, -0.5, P2, g_tmp)
g_P.baddbmm_(1, -0.5, P[k - 1].matmul(g_tmp), P[k - 1])
g_sn += g_P
# g_sn = g_sn * rTr.sqrt()
g_tr = ((-sn.matmul(g_sn) + g_wm.transpose(-2, -1).matmul(wm)) * P[0]).sum((1, 2), keepdim=True) * P[0]
g_sigma = (g_sn + g_sn.transpose(-2, -1) + 2. * g_tr) * (-0.5 / m * rTr)
# g_sigma = g_sigma + g_sigma.transpose(-2, -1)
g_x = torch.baddbmm(wm.matmul(g_ - g_.mean(-1, keepdim=True)), g_sigma, xc)
grad_input = g_x.view(grad.size(1), grad.size(0), *grad.size()[2:]).transpose(0, 1).contiguous()
return grad_input, None, None, None, None, None, None, None
class IterNorm(torch.nn.Module):
def __init__(self, num_features, num_groups=1, num_channels=None, T=5, dim=4, eps=1e-5, momentum=0.1, affine=True,
*args, **kwargs):
super(IterNorm, self).__init__()
# assert dim == 4, 'IterNorm is not support 2D'
self.T = T
self.eps = eps
self.momentum = momentum
self.num_features = num_features
self.affine = affine
self.dim = dim
if num_channels is None:
num_channels = (num_features - 1) // num_groups + 1
num_groups = num_features // num_channels
while num_features % num_channels != 0:
num_channels //= 2
num_groups = num_features // num_channels
assert num_groups > 0 and num_features % num_groups == 0, "num features={}, num groups={}".format(num_features,
num_groups)
self.num_groups = num_groups
self.num_channels = num_channels
shape = [1] * dim
shape[1] = self.num_features
if self.affine:
self.weight = Parameter(torch.Tensor(*shape))
self.bias = Parameter(torch.Tensor(*shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.register_buffer('running_mean', torch.zeros(num_groups, num_channels, 1))
# running whiten matrix
self.register_buffer('running_wm', torch.eye(num_channels).expand(num_groups, num_channels, num_channels))
self.reset_parameters()
def reset_parameters(self):
# self.reset_running_stats()
if self.affine:
torch.nn.init.ones_(self.weight)
torch.nn.init.zeros_(self.bias)
def forward(self, X: torch.Tensor):
X_hat = iterative_normalization_py.apply(X, self.running_mean, self.running_wm, self.num_channels, self.T,
self.eps, self.momentum, self.training)
# affine
if self.affine:
return X_hat * self.weight + self.bias
else:
return X_hat
def extra_repr(self):
return '{num_features}, num_channels={num_channels}, T={T}, eps={eps}, ' \
'momentum={momentum}, affine={affine}'.format(**self.__dict__)
class IterNormRotation(torch.nn.Module):
"""
Concept Whitening Module
The Whitening part is adapted from IterNorm. The core of CW module is learning
an extra rotation matrix R that align target concepts with the output feature
maps.
Because the concept activation is calculated based on a feature map, which
is a matrix, there are multiple ways to calculate the activation, denoted
by activation_mode.
"""
def __init__(self, num_features, num_groups = 1, num_channels=None, T=10, dim=4, eps=1e-5, momentum=0.05, affine=False,
mode = -1, activation_mode='pool_max', *args, **kwargs):
super(IterNormRotation, self).__init__()
assert dim == 4, 'IterNormRotation does not support 2D'
self.T = T
self.eps = eps
self.momentum = momentum
self.num_features = num_features
self.affine = affine
self.dim = dim
self.mode = mode
self.activation_mode = activation_mode
assert num_groups == 1, 'Please keep num_groups = 1. Current version does not support group whitening.'
if num_channels is None:
num_channels = (num_features - 1) // num_groups + 1
num_groups = num_features // num_channels
while num_features % num_channels != 0:
num_channels //= 2
num_groups = num_features // num_channels
assert num_groups > 0 and num_features % num_groups == 0, "num features={}, num groups={}".format(num_features,
num_groups)
self.num_groups = num_groups
self.num_channels = num_channels
shape = [1] * dim
shape[1] = self.num_features
#if self.affine:
self.weight = Parameter(torch.Tensor(*shape))
self.bias = Parameter(torch.Tensor(*shape))
#else:
# self.register_parameter('weight', None)
# self.register_parameter('bias', None)
#pooling and unpooling used in gradient computation
self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=3, return_indices=True)
self.maxunpool = torch.nn.MaxUnpool2d(kernel_size=3, stride=3)
# running mean
self.register_buffer('running_mean', torch.zeros(num_groups, num_channels, 1))
# running whiten matrix
self.register_buffer('running_wm', torch.eye(num_channels).expand(num_groups, num_channels, num_channels))
# running rotation matrix
self.register_buffer('running_rot', torch.eye(num_channels).expand(num_groups, num_channels, num_channels))
# sum Gradient, need to take average later
self.register_buffer('sum_G', torch.zeros(num_groups, num_channels, num_channels))
# counter, number of gradient for each concept
self.register_buffer("counter", torch.ones(num_channels)*0.001)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
torch.nn.init.ones_(self.weight)
torch.nn.init.zeros_(self.bias)
def update_rotation_matrix(self):
"""
Update the rotation matrix R using the accumulated gradient G.
The update uses Cayley transform to make sure R is always orthonormal.
"""
size_R = self.running_rot.size()
with torch.no_grad():
G = self.sum_G/self.counter.reshape(-1,1)
R = self.running_rot.clone()
for i in range(2):
tau = 1000 # learning rate in Cayley transform
alpha = 0
beta = 100000000
c1 = 1e-4
c2 = 0.9
A = torch.einsum('gin,gjn->gij', G, R) - torch.einsum('gin,gjn->gij', R, G) # GR^T - RG^T
I = torch.eye(size_R[2]).expand(*size_R).cuda()
dF_0 = -0.5 * (A ** 2).sum()
# binary search for appropriate learning rate
cnt = 0
while True:
Q = torch.bmm((I + 0.5 * tau * A).inverse(), I - 0.5 * tau * A)
Y_tau = torch.bmm(Q, R)
F_X = (G[:,:,:] * R[:,:,:]).sum()
F_Y_tau = (G[:,:,:] * Y_tau[:,:,:]).sum()
dF_tau = -torch.bmm(torch.einsum('gni,gnj->gij', G, (I + 0.5 * tau * A).inverse()), torch.bmm(A,0.5*(R+Y_tau)))[0,:,:].trace()
if F_Y_tau > F_X + c1*tau*dF_0 + 1e-18:
beta = tau
tau = (beta+alpha)/2
elif dF_tau + 1e-18 < c2*dF_0:
alpha = tau
tau = (beta+alpha)/2
else:
break
cnt += 1
if cnt > 500:
print("--------------------update fail------------------------")
print(F_Y_tau, F_X + c1*tau*dF_0)
print(dF_tau, c2*dF_0)
print("-------------------------------------------------------")
break
print(tau, F_Y_tau)
Q = torch.bmm((I + 0.5 * tau * A).inverse(), I - 0.5 * tau * A)
R = torch.bmm(Q, R)
self.running_rot = R
self.counter = (torch.ones(size_R[-1]) * 0.001).cuda()
def forward(self, X: torch.Tensor):
X_hat = iterative_normalization_py.apply(X, self.running_mean, self.running_wm, self.num_channels, self.T,
self.eps, self.momentum, self.training)
# print(X_hat.shape, self.running_rot.shape)
# nchw
size_X = X_hat.size()
size_R = self.running_rot.size()
# ngchw
X_hat = X_hat.view(size_X[0], size_R[0], size_R[2], *size_X[2:])
# updating the gradient matrix, using the concept dataset
# the gradient is accumulated with momentum to stablize the training
with torch.no_grad():
# When 0<=mode, the jth column of gradient matrix is accumulated
if self.mode>=0:
if self.activation_mode=='mean':
self.sum_G[:,self.mode,:] = self.momentum * -X_hat.mean((0,3,4)) + (1. - self.momentum) * self.sum_G[:,self.mode,:]
self.counter[self.mode] += 1
elif self.activation_mode=='max':
X_test = torch.einsum('bgchw,gdc->bgdhw', X_hat, self.running_rot)
max_values = torch.max(torch.max(X_test, 3, keepdim=True)[0], 4, keepdim=True)[0]
max_bool = max_values==X_test
grad = -((X_hat * max_bool.to(X_hat)).sum((3,4))/max_bool.to(X_hat).sum((3,4))).mean((0,))
self.sum_G[:,self.mode,:] = self.momentum * grad + (1. - self.momentum) * self.sum_G[:,self.mode,:]
self.counter[self.mode] += 1
elif self.activation_mode=='pos_mean':
X_test = torch.einsum('bgchw,gdc->bgdhw', X_hat, self.running_rot)
pos_bool = X_test > 0
grad = -((X_hat * pos_bool.to(X_hat)).sum((3,4))/(pos_bool.to(X_hat).sum((3,4))+0.0001)).mean((0,))
self.sum_G[:,self.mode,:] = self.momentum * grad + (1. - self.momentum) * self.sum_G[:,self.mode,:]
self.counter[self.mode] += 1
elif self.activation_mode=='pool_max':
X_test = torch.einsum('bgchw,gdc->bgdhw', X_hat, self.running_rot)
X_test_nchw = X_test.view(size_X)
maxpool_value, maxpool_indices = self.maxpool(X_test_nchw)
X_test_unpool = self.maxunpool(maxpool_value, maxpool_indices, output_size = size_X).view(size_X[0], size_R[0], size_R[2], *size_X[2:])
maxpool_bool = X_test == X_test_unpool
grad = -((X_hat * maxpool_bool.to(X_hat)).sum((3,4))/(maxpool_bool.to(X_hat).sum((3,4)))).mean((0,))
self.sum_G[:,self.mode,:] = self.momentum * grad + (1. - self.momentum) * self.sum_G[:,self.mode,:]
self.counter[self.mode] += 1
# # When mode > k, this is not included in the paper
# elif self.mode>=0 and self.mode>=self.k:
# X_dot = torch.einsum('ngchw,gdc->ngdhw', X_hat, self.running_rot)
# X_dot = (X_dot == torch.max(X_dot, dim=2,keepdim=True)[0]).float().cuda()
# X_dot_unity = torch.clamp(torch.ceil(X_dot), 0.0, 1.0)
# X_G = torch.einsum('ngchw,ngdhw->gdchw', X_hat, X_dot_unity).mean((3,4))
# X_G[:,:self.k,:] = 0.0
# self.sum_G[:,:,:] += -X_G/size_X[0]
# self.counter[self.k:] += 1
# We set mode = -1 when we don't need to update G. For example, when we train for main objective
X_hat = torch.einsum('bgchw,gdc->bgdhw', X_hat, self.running_rot)
X_hat = X_hat.view(*size_X)
if self.affine:
return X_hat * self.weight + self.bias
else:
return X_hat
def extra_repr(self):
return '{num_features}, num_channels={num_channels}, T={T}, eps={eps}, ' \
'momentum={momentum}, affine={affine}'.format(**self.__dict__)
if __name__ == '__main__':
ItN = IterNormRotation(64, num_groups=2, T=10, momentum=1, affine=False)
print(ItN)
ItN.train()
x = torch.randn(16, 64, 14, 14)
x.requires_grad_()
y = ItN(x)
z = y.transpose(0, 1).contiguous().view(x.size(1), -1)
print(z.matmul(z.t()) / z.size(1))
y.sum().backward()
print('x grad', x.grad.size())
ItN.eval()
y = ItN(x)
z = y.transpose(0, 1).contiguous().view(x.size(1), -1)
print(z.matmul(z.t()) / z.size(1)) |