Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from main import instantiate_from_config | |
from ldm.modules.diffusionmodules.model import Encoder, Decoder | |
from ldm.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
class VQModelDual(pl.LightningModule): | |
def __init__(self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image1_key="image1", | |
image2_key="image2", | |
colorize_nlabels=None, | |
monitor=None, | |
remap=None, | |
sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
): | |
super().__init__() | |
self.image1_key = image1_key | |
self.image2_key = image2_key | |
self.encoder = {} | |
self.decoder = {} | |
self.quantize = {} | |
self.quant_conv = {} | |
self.post_quant_conv = {} | |
self.loss = {} | |
for i in range(2): | |
self.encoder[i+1] = Encoder(**ddconfig) | |
self.decoder[i+1] = Decoder(**ddconfig) | |
self.quantize[i+1] = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
remap=remap, sane_index_shape=sane_index_shape) | |
self.quant_conv[i+1] = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
self.post_quant_conv[i+1] = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.loss[i+1] = instantiate_from_config(lossconfig) | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels)==int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) | |
print(f"Restored from {path}") | |
def encode(self, x, model_key): | |
h = self.encoder[model_key](x) | |
h = self.quant_conv[model_key](h) | |
quant, emb_loss, info = self.quantize[model_key](h) | |
return quant, emb_loss, info | |
def decode(self, quant, model_key): | |
quant = self.post_quant_conv[model_key](quant) | |
dec = self.decoder[model_key](quant) | |
return dec | |
def decode_code(self, code_b, model_key): | |
quant_b = self.quantize[model_key].embed_code(code_b) | |
dec = self.decode(quant_b,model_key) | |
return dec | |
def forward(self, input, model_key): | |
quant, diff, _ = self.encode(input, model_key) | |
dec = self.decode(quant, model_key) | |
return dec, diff | |
def get_input(self, batch, k): | |
x = batch[k] | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
return x.float() | |
def training_step(self, batch, batch_idx, optimizer_idx): | |
breakpoint() | |
x1 = self.get_input(batch, self.image_key1) | |
x2 = self.get_input(batch, self.image_key2) | |
xrec1, qloss1 = self.forward(x1, model_key=1) | |
xrec2, qloss2 = self.forward(x2, model_key=2) | |
if optimizer_idx == 0: | |
# autoencoder 1 | |
aeloss1, log_dict_ae1 = self.loss[1](qloss1, x1, xrec1, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("train/aeloss1", aeloss1, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae1, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
# autoencoder 2 | |
aeloss2, log_dict_ae2 = self.loss[2](qloss2, x2, xrec2, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("train/aeloss2", aeloss2, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae2, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
return aeloss1 + aeloss2 | |
if optimizer_idx == 1: | |
# discriminator 1 | |
discloss1, log_dict_disc1 = self.loss[1](qloss1, x1, xrec1, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("train/discloss1", discloss1, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc1, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
# discriminator 2 | |
discloss2, log_dict_disc2 = self.loss[2](qloss2, x2, xrec2, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("train/discloss", discloss2, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc2, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
return discloss1 + discloss2 | |
def validation_step(self, batch, batch_idx): | |
breakpoint() | |
x1 = self.get_input(batch, self.image_key1) | |
x2 = self.get_input(batch, self.image_key2) | |
xrec1, qloss1 = self.forward(x1, model_key=1) | |
xrec2, qloss2 = self.forward(x2, model_key=2) | |
aeloss1, log_dict_ae1 = self.loss[1](qloss1, x1, xrec1, 0, self.global_step, | |
last_layer=self.get_last_layer(model_key=1), split="val") | |
aeloss2, log_dict_ae2 = self.loss[2](qloss2, x2, xrec2, 0, self.global_step, | |
last_layer=self.get_last_layer(model_key=2), split="val") | |
discloss1, log_dict_disc1 = self.loss[1](qloss1, x1, xrec1, 1, self.global_step, | |
last_layer=self.get_last_layer(model_key=1), split="val") | |
discloss2, log_dict_disc2 = self.loss[2](qloss2, x2, xrec2, 1, self.global_step, | |
last_layer=self.get_last_layer(model_key=2), split="val") | |
rec_loss1 = log_dict_ae1["val/rec_loss"] | |
rec_loss2 = log_dict_ae2["val/rec_loss"] | |
self.log("val/rec_loss1", rec_loss1, | |
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
self.log("val/rec_loss2", rec_loss2, | |
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
self.log("val/aeloss1", aeloss1, | |
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
self.log("val/aeloss2", aeloss2, | |
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True) | |
self.log_dict(log_dict_ae1) | |
self.log_dict(log_dict_disc1) | |
self.log_dict(log_dict_ae2) | |
self.log_dict(log_dict_disc2) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam(list(self.encoder[1].parameters())+ | |
list(self.decoder[1].parameters())+ | |
list(self.quantize[1].parameters())+ | |
list(self.quant_conv[1].parameters())+ | |
list(self.post_quant_conv[1].parameters())+ | |
list(self.encoder[2].parameters())+ | |
list(self.decoder[2].parameters())+ | |
list(self.quantize[2].parameters())+ | |
list(self.quant_conv[2].parameters())+ | |
list(self.post_quant_conv[2].parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
opt_disc = torch.optim.Adam(list(self.loss[1].discriminator.parameters())+ | |
list(self.loss[2].discriminator.parameters()), | |
lr=lr, betas=(0.5, 0.9)) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self, model_key): | |
return self.decoder[model_key].conv_out.weight | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
## log 1 | |
x = self.get_input(batch, self.image_key1) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs1"] = x | |
log["reconstructions1"] = xrec | |
## log 2 | |
x = self.get_input(batch, self.image_key2) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs2"] = x | |
log["reconstructions2"] = xrec | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
return x |