Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import argparse, os, sys, glob | |
import torch | |
import pickle | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
# pl_sd = torch.load(ckpt, map_location="cpu") | |
pl_sd = torch.load(ckpt)#, map_location="cpu") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
def masking_embed(embedding, levels=1): | |
""" | |
size of embedding - nx1xd, n: number of samples, d - 512 | |
replacing the last 128*levels from the embedding | |
""" | |
replace_size = 128*levels | |
random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size) | |
embedding[:, :, -replace_size:] = random_noise | |
return embedding | |
# LOAD MODEL GLOBALLY | |
ckpt_path = './model_files/fishes/epoch=000119.ckpt' | |
config_path = './model_files/2024-03-01T23-15-36-project.yaml' | |
config = OmegaConf.load(config_path) # TODO: Optionally download from same location as ckpt and chnage this logic | |
model = load_model_from_config(config, ckpt_path) # TODO: check path | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
def generate_image(fish_name, masking_level_input, | |
swap_fish_name, swap_level_input): | |
fish_name = fish_name.lower() | |
label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus', | |
4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus', | |
9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis', | |
14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides', | |
18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis', | |
23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus', | |
27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus', | |
31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus', | |
36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'} | |
def get_label_from_class(class_name): | |
for key, value in label_to_class_mapping.items(): | |
if value == class_name: | |
return key | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
prompt = opt.prompt | |
all_images = [] | |
labels = [] | |
class_to_node = './model_files/fishes/class_to_ancestral_label.pkl' | |
with open(class_to_node, 'rb') as pickle_file: | |
class_to_node_dict = pickle.load(pickle_file) | |
class_to_node_dict = {key.lower(): value for key, value in class_to_node_dict.items()} | |
prompt = class_to_node_dict[fish_name] | |
### Trait Swapping | |
if swap_fish_name: | |
swap_fish_name = swap_fish_name.lower() | |
swap_level = int(swap_level_input.split(" ")[-1]) - 1 | |
swap_fish = class_to_node_dict[swap_fish_name] | |
swap_fish_split = swap_fish[0].split(',') | |
fish_name_split = prompt[0].split(',') | |
fish_name_split[swap_level] = swap_fish_split[swap_level] | |
prompt = [','.join(fish_name_split)] | |
all_samples=list() | |
with torch.no_grad(): | |
with model.ema_scope(): | |
uc = None | |
for n in trange(opt.n_iter, desc="Sampling"): | |
all_prompts = opt.n_samples * (prompt) | |
all_prompts = [tuple(all_prompts)] | |
c = model.get_learned_conditioning({'class_to_node': all_prompts}) | |
if masking_level_input != "None": | |
masked_level = int(masking_level_input.split(" ")[-1]) | |
masked_level = 4-masked_level | |
c = masking_embed(c, levels=masked_level) | |
shape = [3, 64, 64] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) | |
all_samples.append(x_samples_ddim) | |
###### to make grid | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=opt.n_samples) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
final_image = Image.fromarray(grid.astype(np.uint8)) | |
# final_image.save(os.path.join(sample_path, f'{class_name.replace(" ", "-")}.png')) | |
return final_image | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a painting of a virus monster playing guitar", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=200, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=1.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=256, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=256, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=1, | |
help="how many samples to produce for the given prompt", | |
) | |
parser.add_argument( | |
"--output_dir_name", | |
type=str, | |
default='default_file', | |
help="name of folder", | |
) | |
parser.add_argument( | |
"--postfix", | |
type=str, | |
default='', | |
help="name of folder", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
# default=5.0, | |
default=1.0, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
opt = parser.parse_args() | |
title = "🎞️ Phylo Diffusion - Generating Fish Images Tool" | |
description = "Write the Species name to generate an image for.\n For Trait Masking: Specify the Level information as well" | |
def load_example(prompt, level, option, components): | |
components['prompt_input'].value = prompt | |
components['masking_level_input'].value = level | |
# components['option'].value = option | |
def setup_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Phylo Diffusion - Generating Fish Images Tool") | |
gr.Markdown("### Write the Species name to generate a fish image") | |
gr.Markdown("### 1. Trait Masking: Specify the Level information as well") | |
gr.Markdown("### 2. Trait Swapping: Specify the species name to swap trait with at also at what level") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Generate Images Based on Prompts") | |
gr.Markdown("Enter a prompt to generate an image:") | |
prompt_input = gr.Textbox(label="Species Name") | |
gr.Markdown("Trait Masking") | |
with gr.Row(): | |
masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None") | |
# masking_node_input = gr.Dropdown(label="Select Internal", choices=["0", "1", "2", "3", "4", "5", "6", "7", "8"], value="0") | |
gr.Markdown("Trait Swapping") | |
with gr.Row(): | |
swap_fish_name = gr.Textbox(label="Species Name to swap trait with:") | |
swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3") | |
submit_button = gr.Button("Generate") | |
gr.Markdown("## Phylogeny Tree") | |
architecture_image = "phylogeny_tree.jpg" # Update this with the actual path | |
gr.Image(value=architecture_image, label="Phylogeny Tree") | |
with gr.Column(): | |
gr.Markdown("## Generated Image") | |
output_image = gr.Image(label="Generated Image", width=512, height=512) | |
# Place to put example buttons | |
gr.Markdown("## Select an example:") | |
examples = [ | |
("Gambusia Affinis", "None", "", "Level 3"), | |
("Lepomis Auritus", "None", "", "Level 3"), | |
("Lepomis Auritus", "Level 3", "", "Level 3"), | |
("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")] | |
for text, level, swap_text, swap_level in examples: | |
if level == "None" and swap_text == "": | |
button = gr.Button(f"Species: {text}") | |
elif level != "None": | |
button = gr.Button(f"Species: {text} | Masking: {level}") | |
elif swap_text != "": | |
button = gr.Button(f"Species: {text} | Swapping with {swap_text} at {swap_level} ") | |
button.click( | |
fn=lambda text=text, level=level, swap_text=swap_text, swap_level=swap_level: (text, level, swap_text, swap_level), | |
inputs=[], | |
outputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input] | |
) | |
# Display an image of the architecture | |
submit_button.click( | |
fn=generate_image, | |
inputs=[prompt_input, masking_level_input, | |
swap_fish_name, swap_level_input], | |
outputs=output_image | |
) | |
return demo | |
# # Launch the interface | |
# iface = setup_interface() | |
# iface = gr.Interface( | |
# fn=generate_image, | |
# inputs=gr.Textbox(label="Prompt"), | |
# outputs=[ | |
# gr.Image(label="Generated Image"), | |
# ] | |
# ) | |
iface = setup_interface() | |
iface.launch(share=True) |