import torch import gradio as gr import argparse, os, sys, glob import torch import pickle import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from einops import rearrange from torchvision.utils import make_grid from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") # pl_sd = torch.load(ckpt, map_location="cpu") pl_sd = torch.load(ckpt)#, map_location="cpu") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def masking_embed(embedding, levels=1): """ size of embedding - nx1xd, n: number of samples, d - 512 replacing the last 128*levels from the embedding """ replace_size = 128*levels random_noise = torch.randn(embedding.shape[0], embedding.shape[1], replace_size) embedding[:, :, -replace_size:] = random_noise return embedding # LOAD MODEL GLOBALLY ckpt_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/checkpoints/epoch=000119.ckpt' config_path = '/globalscratch/mridul/ldm/final_runs_eccv/fishes/2024-03-01T23-15-36_HLE_days3/configs/2024-03-01T23-15-36-project.yaml' config = OmegaConf.load(config_path) # TODO: Optionally download from same location as ckpt and chnage this logic model = load_model_from_config(config, ckpt_path) # TODO: check path device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) def generate_image(fish_name, masking_level_input, swap_fish_name, swap_level_input): fish_name = fish_name.lower() label_to_class_mapping = {0: 'Alosa-chrysochloris', 1: 'Carassius-auratus', 2: 'Cyprinus-carpio', 3: 'Esox-americanus', 4: 'Gambusia-affinis', 5: 'Lepisosteus-osseus', 6: 'Lepisosteus-platostomus', 7: 'Lepomis-auritus', 8: 'Lepomis-cyanellus', 9: 'Lepomis-gibbosus', 10: 'Lepomis-gulosus', 11: 'Lepomis-humilis', 12: 'Lepomis-macrochirus', 13: 'Lepomis-megalotis', 14: 'Lepomis-microlophus', 15: 'Morone-chrysops', 16: 'Morone-mississippiensis', 17: 'Notropis-atherinoides', 18: 'Notropis-blennius', 19: 'Notropis-boops', 20: 'Notropis-buccatus', 21: 'Notropis-buchanani', 22: 'Notropis-dorsalis', 23: 'Notropis-hudsonius', 24: 'Notropis-leuciodus', 25: 'Notropis-nubilus', 26: 'Notropis-percobromus', 27: 'Notropis-stramineus', 28: 'Notropis-telescopus', 29: 'Notropis-texanus', 30: 'Notropis-volucellus', 31: 'Notropis-wickliffi', 32: 'Noturus-exilis', 33: 'Noturus-flavus', 34: 'Noturus-gyrinus', 35: 'Noturus-miurus', 36: 'Noturus-nocturnus', 37: 'Phenacobius-mirabilis'} def get_label_from_class(class_name): for key, value in label_to_class_mapping.items(): if value == class_name: return key if opt.plms: sampler = PLMSSampler(model) else: sampler = DDIMSampler(model) prompt = opt.prompt all_images = [] labels = [] class_to_node = '/fastscratch/mridul/fishes/class_to_ancestral_label.pkl' with open(class_to_node, 'rb') as pickle_file: class_to_node_dict = pickle.load(pickle_file) class_to_node_dict = {key.lower(): value for key, value in class_to_node_dict.items()} prompt = class_to_node_dict[fish_name] ### Trait Swapping if swap_fish_name: swap_fish_name = swap_fish_name.lower() swap_level = int(swap_level_input.split(" ")[-1]) - 1 swap_fish = class_to_node_dict[swap_fish_name] swap_fish_split = swap_fish[0].split(',') fish_name_split = prompt[0].split(',') fish_name_split[swap_level] = swap_fish_split[swap_level] prompt = [','.join(fish_name_split)] all_samples=list() with torch.no_grad(): with model.ema_scope(): uc = None for n in trange(opt.n_iter, desc="Sampling"): all_prompts = opt.n_samples * (prompt) all_prompts = [tuple(all_prompts)] c = model.get_learned_conditioning({'class_to_node': all_prompts}) if masking_level_input != "None": masked_level = int(masking_level_input.split(" ")[-1]) masked_level = 4-masked_level c = masking_embed(c, levels=masked_level) shape = [3, 64, 64] samples_ddim, _ = sampler.sample(S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) all_samples.append(x_samples_ddim) ###### to make grid # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=opt.n_samples) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() final_image = Image.fromarray(grid.astype(np.uint8)) # final_image.save(os.path.join(sample_path, f'{class_name.replace(" ", "-")}.png')) return final_image if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render" ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples" ) parser.add_argument( "--ddim_steps", type=int, default=200, help="number of ddim sampling steps", ) parser.add_argument( "--plms", action='store_true', help="use plms sampling", ) parser.add_argument( "--ddim_eta", type=float, default=1.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument( "--n_iter", type=int, default=1, help="sample this often", ) parser.add_argument( "--H", type=int, default=256, help="image height, in pixel space", ) parser.add_argument( "--W", type=int, default=256, help="image width, in pixel space", ) parser.add_argument( "--n_samples", type=int, default=1, help="how many samples to produce for the given prompt", ) parser.add_argument( "--output_dir_name", type=str, default='default_file', help="name of folder", ) parser.add_argument( "--postfix", type=str, default='', help="name of folder", ) parser.add_argument( "--scale", type=float, # default=5.0, default=1.0, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", ) opt = parser.parse_args() title = "🎞️ Phylo Diffusion - Generating Fish Images Tool" description = "Write the Species name to generate an image for.\n For Trait Masking: Specify the Level information as well" def load_example(prompt, level, option, components): components['prompt_input'].value = prompt components['masking_level_input'].value = level # components['option'].value = option def setup_interface(): with gr.Blocks() as demo: gr.Markdown("# Phylo Diffusion - Generating Fish Images Tool") gr.Markdown("### Write the Species name to generate a fish image") gr.Markdown("### 1. Trait Masking: Specify the Level information as well") gr.Markdown("### 2. Trait Swapping: Specify the species name to swap trait with at also at what level") with gr.Row(): with gr.Column(): gr.Markdown("## Generate Images Based on Prompts") gr.Markdown("Enter a prompt to generate an image:") prompt_input = gr.Textbox(label="Species Name") gr.Markdown("Trait Masking") with gr.Row(): masking_level_input = gr.Dropdown(label="Select Ancestral Level", choices=["None", "Level 3", "Level 2"], value="None") # masking_node_input = gr.Dropdown(label="Select Internal", choices=["0", "1", "2", "3", "4", "5", "6", "7", "8"], value="0") gr.Markdown("Trait Swapping") with gr.Row(): swap_fish_name = gr.Textbox(label="Species Name to swap trait with:") swap_level_input = gr.Dropdown(label="Level of swapping", choices=["Level 3", "Level 2"], value="Level 3") submit_button = gr.Button("Generate") gr.Markdown("## Phylogeny Tree") architecture_image = "phylogeny_tree.jpg" # Update this with the actual path gr.Image(value=architecture_image, label="Phylogeny Tree") with gr.Column(): gr.Markdown("## Generated Image") output_image = gr.Image(label="Generated Image", width=512, height=512) # Place to put example buttons gr.Markdown("## Select an example:") examples = [ ("Gambusia Affinis", "None", "", "Level 3"), ("Lepomis Auritus", "None", "", "Level 3"), ("Lepomis Auritus", "Level 3", "", "Level 3"), ("Noturus nocturnus", "None", "Notropis dorsalis", "Level 2")] for text, level, swap_text, swap_level in examples: if level == "None" and swap_text == "": button = gr.Button(f"Species: {text}") elif level != "None": button = gr.Button(f"Species: {text} | Masking: {level}") elif swap_text != "": button = gr.Button(f"Species: {text} | Swapping with {swap_text} at {swap_level} ") button.click( fn=lambda text=text, level=level, swap_text=swap_text, swap_level=swap_level: (text, level, swap_text, swap_level), inputs=[], outputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input] ) # Display an image of the architecture submit_button.click( fn=generate_image, inputs=[prompt_input, masking_level_input, swap_fish_name, swap_level_input], outputs=output_image ) return demo # # Launch the interface # iface = setup_interface() # iface = gr.Interface( # fn=generate_image, # inputs=gr.Textbox(label="Prompt"), # outputs=[ # gr.Image(label="Generated Image"), # ] # ) iface = setup_interface() iface.launch(share=True)