model: base_learning_rate: 5.0e-06 target: ldm.models.diffusion.ddpm.LatentDiffusion project: Fish-Diffusion params: linear_start: 0.0015 linear_end: 0.0195 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: class_label image_size: 64 channels: 3 cond_stage_trainable: true conditioning_key: crossattn monitor: val/loss_simple_ema unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 64 in_channels: 3 out_channels: 3 model_channels: 224 attention_resolutions: - 8 - 4 - 2 num_res_blocks: 2 channel_mult: - 1 - 2 - 3 - 4 num_head_channels: 32 use_spatial_transformer: true transformer_depth: 1 context_dim: 512 first_stage_config: target: ldm.models.autoencoder.VQModelInterface params: embed_dim: 3 n_embed: 8192 ckpt_path: /fastscratch/mridul/new_diffusion_models/ldm/vq-base/2023-11-07T15-07-37_VQ_f4_org/checkpoints/epoch=000371.ckpt ddconfig: double_z: false z_channels: 3 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.HeirClassEmbedder params: n_classes: - 3 - 6 - 9 - 38 embed_dim: 512 key: class_to_node data: target: main.DataModuleFromConfig params: batch_size: 8 num_workers: 8 wrap: true train: target: ldm.data.custom.CustomTrain params: training_images_list_file: /fastscratch/elhamod/data/Fish/fish_train.txt size: 256 add_labels: true class_to_node: /fastscratch/mridul/fishes/class_to_ancestral_label.pkl validation: target: ldm.data.custom.CustomTest params: test_images_list_file: /fastscratch/elhamod/data/Fish/fish_test.txt size: 256 add_labels: true class_to_node: /fastscratch/mridul/fishes/class_to_ancestral_label.pkl