import torch import torch.nn as nn from functools import partial import clip import open_clip from einops import rearrange, repeat from transformers import CLIPTokenizer, CLIPTextModel # import kornia from transformers import BertTokenizerFast # TODO: add to reuquirements import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class'): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None] c = self.embedding(c) return c class HeirClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=[3, 6, 9, 38], key='class', device='cuda'): super().__init__() assert embed_dim % len(n_classes) == 0 self.key = key self.device = device self.embed_heir_dim = embed_dim//len(n_classes) self.embedding_layers = [] self.embedding_level0 = nn.Embedding(n_classes[0], self.embed_heir_dim) self.embedding_level1 = nn.Embedding(n_classes[1], self.embed_heir_dim) self.embedding_level2 = nn.Embedding(n_classes[2], self.embed_heir_dim) self.embedding_level3 = nn.Embedding(n_classes[3], self.embed_heir_dim) # for i in list(n_classes): # embedding = nn.Embedding(i, self.embed_heir_dim) # self.embedding_layers.append(embedding) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn batch_size = len(batch[key][0]) heir_classes = batch[key] # heir_classes_list = [] # for s in heir_classes: # numbers = s.split(', ') # heir_classes_list.extend(int(num) for num in numbers) heir_classes = [[int(num) for num in item.split(', ')] for item in heir_classes[0]] transformed_list = [list(pair) for pair in zip(*heir_classes)] tensor_list = [torch.tensor(sublist).to(self.device) for sublist in transformed_list] tensor_reshaped = [torch.reshape(sublist, (batch_size, 1)) for sublist in tensor_list] embedding_list = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]), self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3])] # embedding = [] # for i, classes in enumerate(heir_classes): # embedding.append(self.embedding_layers[i](classes)) embedding = torch.cat(embedding_list, dim=-1) return embedding class HeirClassEmbedderMultiLevel(nn.Module): def __init__(self, embed_dim, n_classes=[3, 6, 9, 38], key='class', device='cuda'): super().__init__() assert embed_dim % len(n_classes) == 0 self.key = key self.device = device self.n_classes = n_classes self.embed_heir_dim = embed_dim//len(n_classes) self.embedding_layers = [] self.embedding_level0 = nn.Embedding(n_classes[0], self.embed_heir_dim) self.embedding_level1 = nn.Embedding(n_classes[1], self.embed_heir_dim) self.embedding_level2 = nn.Embedding(n_classes[2], self.embed_heir_dim) self.embedding_level3 = nn.Embedding(n_classes[3], self.embed_heir_dim) # self.embedding_level4 = nn.Embedding(n_classes[4], self.embed_heir_dim) # self.embedding_layers = [] self.embedding_layers = nn.ModuleList() for i in list(n_classes): embedding = nn.Embedding(i, self.embed_heir_dim) self.embedding_layers.append(embedding.to(self.device)) # self.to(self.device) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn batch_size = len(batch[key][0]) hier_classes = batch[key] # heir_classes_list = [] # for s in heir_classes: # numbers = s.split(', ') # heir_classes_list.extend(int(num) for num in numbers) hier_classes = [[int(num) for num in item.split(', ')] for item in hier_classes[0]] transformed_list = [list(pair) for pair in zip(*hier_classes)] tensor_list = [torch.tensor(sublist).to(self.device) for sublist in transformed_list] tensor_reshaped = [torch.reshape(sublist, (batch_size, 1)) for sublist in tensor_list] embedding_list = [] for i in range(len(self.n_classes)): embedding_list.append(self.embedding_layers[i](tensor_reshaped[i])) # embedding_list_org = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]), # self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3]), # self.embedding_level3(tensor_reshaped[4])] # embedding_list_org = [self.embedding_level0(tensor_reshaped[0]), self.embedding_level1(tensor_reshaped[1]), # self.embedding_level2(tensor_reshaped[2]), self.embedding_level3(tensor_reshaped[3])] # embedding_org = torch.cat(embedding_list_org, dim=-1) embedding = torch.cat(embedding_list, dim=-1) return embedding class TransformerEmbedder(AbstractEncoder): """Some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): super().__init__() self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer)) def forward(self, tokens): tokens = tokens.to(self.device) # meh z = self.transformer(tokens, return_embeddings=True) return z def encode(self, x): return self(x) class BERTTokenizer(AbstractEncoder): """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" def __init__(self, device="cuda", vq_interface=True, max_length=77): super().__init__() self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") self.device = device self.vq_interface = vq_interface self.max_length = max_length def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) return tokens @torch.no_grad() def encode(self, text): tokens = self(text) if not self.vq_interface: return tokens return None, None, [None, None, tokens] def decode(self, text): return text class BERTEmbedderExtra(AbstractEncoder): """Uses the BERT tokenizr model and add some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, device="cuda",use_tokenizer=True, embedding_dropout=0.0): super().__init__() self.use_tknz_fn = use_tokenizer if self.use_tknz_fn: self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) self.device = device special_tokens_dict = {'additional_special_tokens': ['','']} num_added_toks = self.tknz_fn.tokenizer.add_special_tokens(special_tokens_dict) vocab_size = len(self.tknz_fn.tokenizer) self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), emb_dropout=embedding_dropout) def forward(self, text): if self.use_tknz_fn: tokens = self.tknz_fn(text)#.to(self.device) else: tokens = text z = self.transformer(tokens, return_embeddings=True) return z def encode(self, text): # output of length 77 return self(text) class BERTEmbedder(AbstractEncoder): """Uses the BERT tokenizr model and add some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, device="cuda",use_tokenizer=True, embedding_dropout=0.0): super().__init__() self.use_tknz_fn = use_tokenizer if self.use_tknz_fn: self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), emb_dropout=embedding_dropout) def forward(self, text): if self.use_tknz_fn: tokens = self.tknz_fn(text)#.to(self.device) else: tokens = text z = self.transformer(tokens, return_embeddings=True) return z def encode(self, text): # output of length 77 return self(text) class SpatialRescaler(nn.Module): def __init__(self, n_stages=1, method='bilinear', multiplier=0.5, in_channels=3, out_channels=None, bias=False): super().__init__() self.n_stages = n_stages assert self.n_stages >= 0 assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] self.multiplier = multiplier self.interpolator = partial(torch.nn.functional.interpolate, mode=method) self.remap_output = out_channels is not None if self.remap_output: print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) def forward(self,x): for stage in range(self.n_stages): x = self.interpolator(x, scale_factor=self.multiplier) if self.remap_output: x = self.channel_mapper(x) return x def encode(self, x): return self(x) ### not using - hugging face implementation class FrozenCLIPEmbedder(AbstractEncoder): """Uses the CLIP transformer encoder for text (from Hugging Face)""" def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): super().__init__() self.tokenizer = CLIPTokenizer.from_pretrained(version) self.transformer = CLIPTextModel.from_pretrained(version) self.transformer.projection_dim = 512 self.device = device self.max_length = max_length self.freeze() def freeze(self): self.transformer = self.transformer.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state # pooled_output = outputs.pooler_output # return pooled_output return z def encode(self, text): return self(text) class FrozenCLIPTextEmbedder(nn.Module): """ Uses the CLIP transformer encoder for text. """ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): super().__init__() self.model, _ = clip.load(version, jit=False, device="cpu") self.device = device self.max_length = max_length self.n_repeat = n_repeat self.normalize = normalize def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = clip.tokenize(text).to(self.device) z = self.model.encode_text(tokens) if self.normalize: z = z / torch.linalg.norm(z, dim=1, keepdim=True) return z def encode(self, text): z = self(text) if z.ndim==2: z = z[:, None, :] z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) return z class FrozenBioClipTextEmbedder(nn.Module): """ Uses the BioClip transformer encoder for text. """ def __init__(self, version='hf-hub:imageomics/bioclip', device="cuda", max_length=77, n_repeat=1, normalize=True): super().__init__() # self.model, _ = open_clip.create_model_and_transforms(version, jit=False, device="cpu") self.model, _, _ = open_clip.create_model_and_transforms(version) self.model = self.model.eval() self.model = self.model.to(device) self.tokenizer = open_clip.get_tokenizer(version) self.device = device self.max_length = max_length self.n_repeat = n_repeat self.normalize = normalize # model = model.eval() # model = model.to(device) def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = self.tokenizer(text).to(self.device) z = self.model.encode_text(tokens) if self.normalize: z = z / torch.linalg.norm(z, dim=1, keepdim=True) return z def encode(self, text): z = self(text) if z.ndim==2: z = z[:, None, :] z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) return z # class FrozenClipImageEmbedder(nn.Module): # """ # Uses the CLIP image encoder. # """ # def __init__( # self, # model, # jit=False, # device='cuda' if torch.cuda.is_available() else 'cpu', # antialias=False, # ): # super().__init__() # self.model, _ = clip.load(name=model, device=device, jit=jit) # self.antialias = antialias # self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) # self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) # def preprocess(self, x): # # normalize to [0,1] # x = kornia.geometry.resize(x, (224, 224), # interpolation='bicubic',align_corners=True, # antialias=self.antialias) # x = (x + 1.) / 2. # # renormalize according to clip # x = kornia.enhance.normalize(x, self.mean, self.std) # return x # def forward(self, x): # # x is assumed to be in range [-1,1] # return self.model.encode_image(self.preprocess(x))