mrisdi commited on
Commit
dc4d49b
1 Parent(s): 6198870

Upload 4 files

Browse files
Files changed (4) hide show
  1. Dockerfile +14 -0
  2. app.py +47 -0
  3. requirements.txt +0 -0
  4. yolov8n.pt +3 -0
Dockerfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use the official Python 3.10.11 image
2
+ FROM python:3.10.11
3
+
4
+ # Copy the current directory contents into the container at .
5
+ COPY . .
6
+
7
+ # Set the working directory to /
8
+ WORKDIR /
9
+
10
+ # Install requirements.txt
11
+ RUN pip install --no-cache-dir --upgrade -r /requirements.txt
12
+
13
+ # Start the FastAPI app on port 7860, the default port expected by Spaces
14
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile
2
+ from fastapi.middleware.cors import CORSMiddleware
3
+ from pydantic import BaseModel
4
+ import numpy as np
5
+ import cv2
6
+ from ultralytics import YOLO
7
+ from PIL import Image
8
+ import base64
9
+ from io import BytesIO
10
+
11
+ app = FastAPI()
12
+ model = YOLO("yolov8n.pt")
13
+
14
+ origins = ["*"]
15
+
16
+ app.add_middleware(
17
+ CORSMiddleware,
18
+ allow_origins=origins,
19
+ allow_credentials=True,
20
+ allow_methods=["*"],
21
+ allow_headers=["*"],
22
+ )
23
+
24
+ @app.post("/detect/")
25
+ async def detect_objects(file: UploadFile):
26
+ # Process the uploaded image for object detection
27
+ image_bytes = await file.read()
28
+ image = np.frombuffer(image_bytes, dtype=np.uint8)
29
+ image = cv2.imdecode(image, cv2.IMREAD_COLOR)
30
+
31
+ # Perform object detection with YOLOv8
32
+ detections = model(image)
33
+
34
+ return detections[0].tojson()
35
+
36
+ class ImageData(BaseModel):
37
+ image: str # Data gambar dalam format base64
38
+
39
+ @app.post("/uploadimage")
40
+ async def upload_image(image_data: ImageData):
41
+ # Mengonversi base64 ke gambar
42
+ base64_data = image_data.image.split(',')[1]
43
+ image = Image.open(BytesIO(base64.b64decode(base64_data)))
44
+ detections = model(image)
45
+
46
+ return detections[0].tojson()
47
+
requirements.txt ADDED
Binary file (2.56 kB). View file
 
yolov8n.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59b3d833e2ff32e194b5bb8e08d211dc7c5bdf144b90d2c8412c47ccfc83b36
3
+ size 6549796