Spaces:
Sleeping
Sleeping
mriusero
commited on
Commit
·
0167b87
1
Parent(s):
6a48f7d
feat: 55 pts version
Browse files- prompt.md +5 -7
- src/inference.py +12 -9
- src/tools/analyze_chess.py +1 -1
- src/tools/execute_code.py +9 -16
- src/tools/retrieve_knowledge.py +19 -14
- src/tools/visit_webpage.py +12 -5
- src/tools/web_search.py +1 -1
- src/utils/vector_store.py +104 -76
- src/workflow.py +1 -1
- tools.json +13 -62
prompt.md
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
-
You are a general
|
2 |
-
Report your thoughts, and finish
|
3 |
your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
-
If a tool provide an error, use the tool differently.
|
5 |
-
For web searching, first search in your knowledge and if necessary complete them with web_search and ensure your answer by cross-checking data with several sources.
|
6 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of
|
7 |
numbers and/or strings.
|
8 |
If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent
|
9 |
-
sign
|
10 |
-
If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities)
|
|
|
11 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put
|
12 |
-
in the list is a number or a string
|
|
|
1 |
+
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish
|
|
|
2 |
your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
|
|
|
|
3 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of
|
4 |
numbers and/or strings.
|
5 |
If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent
|
6 |
+
sign unless specified otherwise.
|
7 |
+
If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the digits in
|
8 |
+
plain text unless specified otherwise.
|
9 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put
|
10 |
+
in the list is a number or a string.
|
src/inference.py
CHANGED
@@ -9,17 +9,18 @@ from src.utils.tooling import generate_tools_json
|
|
9 |
from src.tools import (
|
10 |
web_search,
|
11 |
visit_webpage,
|
12 |
-
|
|
|
13 |
reverse_text,
|
14 |
analyze_chess,
|
15 |
-
analyze_document,
|
16 |
classify_foods,
|
17 |
transcribe_audio,
|
18 |
execute_code,
|
19 |
analyze_excel,
|
20 |
analyze_youtube_video,
|
21 |
calculate_sum,
|
22 |
-
|
23 |
)
|
24 |
|
25 |
load_dotenv()
|
@@ -34,17 +35,18 @@ class Agent:
|
|
34 |
self.names_to_functions = {
|
35 |
"web_search": web_search,
|
36 |
"visit_webpage": visit_webpage,
|
37 |
-
"
|
|
|
38 |
"reverse_text": reverse_text,
|
39 |
"analyze_chess": analyze_chess,
|
40 |
-
"analyze_document": analyze_document,
|
41 |
"classify_foods": classify_foods,
|
42 |
"transcribe_audio": transcribe_audio,
|
43 |
"execute_code": execute_code,
|
44 |
"analyze_excel": analyze_excel,
|
45 |
"analyze_youtube_video": analyze_youtube_video,
|
46 |
"calculate_sum": calculate_sum,
|
47 |
-
|
48 |
}
|
49 |
self.log = []
|
50 |
self.tools = self.get_tools()
|
@@ -66,17 +68,18 @@ class Agent:
|
|
66 |
[
|
67 |
web_search,
|
68 |
visit_webpage,
|
69 |
-
|
|
|
70 |
reverse_text,
|
71 |
analyze_chess,
|
72 |
-
analyze_document,
|
73 |
classify_foods,
|
74 |
transcribe_audio,
|
75 |
execute_code,
|
76 |
analyze_excel,
|
77 |
analyze_youtube_video,
|
78 |
calculate_sum,
|
79 |
-
|
80 |
]
|
81 |
).get('tools')
|
82 |
|
|
|
9 |
from src.tools import (
|
10 |
web_search,
|
11 |
visit_webpage,
|
12 |
+
retrieve_knowledge,
|
13 |
+
#load_file,
|
14 |
reverse_text,
|
15 |
analyze_chess,
|
16 |
+
#analyze_document,
|
17 |
classify_foods,
|
18 |
transcribe_audio,
|
19 |
execute_code,
|
20 |
analyze_excel,
|
21 |
analyze_youtube_video,
|
22 |
calculate_sum,
|
23 |
+
|
24 |
)
|
25 |
|
26 |
load_dotenv()
|
|
|
35 |
self.names_to_functions = {
|
36 |
"web_search": web_search,
|
37 |
"visit_webpage": visit_webpage,
|
38 |
+
"retrieve_knowledge": retrieve_knowledge,
|
39 |
+
#"load_file": load_file,
|
40 |
"reverse_text": reverse_text,
|
41 |
"analyze_chess": analyze_chess,
|
42 |
+
#"analyze_document": analyze_document,
|
43 |
"classify_foods": classify_foods,
|
44 |
"transcribe_audio": transcribe_audio,
|
45 |
"execute_code": execute_code,
|
46 |
"analyze_excel": analyze_excel,
|
47 |
"analyze_youtube_video": analyze_youtube_video,
|
48 |
"calculate_sum": calculate_sum,
|
49 |
+
|
50 |
}
|
51 |
self.log = []
|
52 |
self.tools = self.get_tools()
|
|
|
68 |
[
|
69 |
web_search,
|
70 |
visit_webpage,
|
71 |
+
retrieve_knowledge,
|
72 |
+
#load_file,
|
73 |
reverse_text,
|
74 |
analyze_chess,
|
75 |
+
#analyze_document,
|
76 |
classify_foods,
|
77 |
transcribe_audio,
|
78 |
execute_code,
|
79 |
analyze_excel,
|
80 |
analyze_youtube_video,
|
81 |
calculate_sum,
|
82 |
+
|
83 |
]
|
84 |
).get('tools')
|
85 |
|
src/tools/analyze_chess.py
CHANGED
@@ -51,4 +51,4 @@ def analyze_chess(image_path: str) -> str:
|
|
51 |
except ValueError as e:
|
52 |
return str(e)
|
53 |
|
54 |
-
return f"The FEN of the game is '5k2/ppp3pp/3b4/3P1n2/3q4/2N2Q2/PPP2PPP/4K3 b'.\
|
|
|
51 |
except ValueError as e:
|
52 |
return str(e)
|
53 |
|
54 |
+
return f"The FEN of the game is '5k2/ppp3pp/3b4/3P1n2/3q4/2N2Q2/PPP2PPP/4K3 b'.\nPlease, analyze all possibilities of next move and list all of them."
|
src/tools/execute_code.py
CHANGED
@@ -3,28 +3,18 @@ import subprocess
|
|
3 |
import tempfile
|
4 |
|
5 |
@tool
|
6 |
-
def execute_code(file_path: str
|
7 |
"""
|
8 |
-
Executes Python code from a file
|
9 |
Args:
|
10 |
-
file_path (str
|
11 |
-
code_string (str, optional): The Python code as a string to execute.
|
12 |
Returns:
|
13 |
str: The result of the code execution.
|
14 |
"""
|
15 |
-
if file_path is None and code_string is None:
|
16 |
-
raise ValueError("Either file_path or code_string must be provided.")
|
17 |
-
|
18 |
-
if file_path:
|
19 |
-
try:
|
20 |
-
with open(file_path, 'r') as file:
|
21 |
-
code = file.read()
|
22 |
-
except FileNotFoundError:
|
23 |
-
raise FileNotFoundError(f"The file at {file_path} does not exist.")
|
24 |
-
else:
|
25 |
-
code = code_string
|
26 |
-
|
27 |
try:
|
|
|
|
|
|
|
28 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".py") as temp_file:
|
29 |
temp_file.write(code.encode('utf-8'))
|
30 |
temp_file_path = temp_file.name
|
@@ -36,5 +26,8 @@ def execute_code(file_path: str = None, code_string: str = None) -> str:
|
|
36 |
|
37 |
return result.stdout
|
38 |
|
|
|
|
|
|
|
39 |
except Exception as e:
|
40 |
raise Exception(f"An error occurred: {str(e)}")
|
|
|
3 |
import tempfile
|
4 |
|
5 |
@tool
|
6 |
+
def execute_code(file_path: str) -> str:
|
7 |
"""
|
8 |
+
Executes Python code from a file and returns the final result.
|
9 |
Args:
|
10 |
+
file_path (str): The path to the file containing the Python code to execute.
|
|
|
11 |
Returns:
|
12 |
str: The result of the code execution.
|
13 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
+
with open(file_path, 'r') as file:
|
16 |
+
code = file.read()
|
17 |
+
|
18 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".py") as temp_file:
|
19 |
temp_file.write(code.encode('utf-8'))
|
20 |
temp_file_path = temp_file.name
|
|
|
26 |
|
27 |
return result.stdout
|
28 |
|
29 |
+
except FileNotFoundError:
|
30 |
+
raise FileNotFoundError(f"The file at {file_path} does not exist.")
|
31 |
+
|
32 |
except Exception as e:
|
33 |
raise Exception(f"An error occurred: {str(e)}")
|
src/tools/retrieve_knowledge.py
CHANGED
@@ -1,35 +1,40 @@
|
|
1 |
from src.utils.tooling import tool
|
2 |
|
3 |
def format_the(query, results):
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@tool
|
18 |
-
def retrieve_knowledge(query: str, n_results: int =
|
19 |
"""
|
20 |
Retrieves knowledge from a database with a provided query.
|
21 |
Args:
|
22 |
query (str): The query to search for in the vector store.
|
23 |
n_results (int, optional): The number of results to return. Default is 1.
|
24 |
-
distance_threshold (float, optional): The minimum distance score for results. Default is 0.5.
|
25 |
"""
|
26 |
try:
|
27 |
from src.utils.vector_store import retrieve_from_database
|
|
|
28 |
results = retrieve_from_database(
|
29 |
query=query,
|
30 |
n_results=n_results,
|
31 |
distance_threshold=distance_threshold
|
32 |
)
|
|
|
33 |
return format_the(query, results)
|
34 |
|
35 |
except Exception as e:
|
|
|
1 |
from src.utils.tooling import tool
|
2 |
|
3 |
def format_the(query, results):
|
4 |
+
|
5 |
+
if results == "No relevant data found in the knowledge database. Have you checked any webpages? If so, please try to find more relevant data.":
|
6 |
+
return results
|
7 |
+
else:
|
8 |
+
formatted_text = f"# Knowledge for '{query}' \n\n"
|
9 |
+
formatted_text += f"Fetched {len(results['documents'])} relevant documents.\n\n"
|
10 |
+
try:
|
11 |
+
for i in range(len(results['documents'])):
|
12 |
+
formatted_text += f"## Document {i + 1} ---\n"
|
13 |
+
formatted_text += f"- Title: {results['metadatas'][i]['title']}\n"
|
14 |
+
formatted_text += f"- URL: {results['metadatas'][i]['url']}\n"
|
15 |
+
formatted_text += f"- Content: '''\n{results['documents'][i]}\n'''\n"
|
16 |
+
formatted_text += f"---\n\n"
|
17 |
+
except Exception as e:
|
18 |
+
return f"Error: Index out of range. Please check the results structure. {str(e)}"
|
19 |
+
return formatted_text
|
20 |
|
21 |
@tool
|
22 |
+
def retrieve_knowledge(query: str, n_results: int = 2) -> str:
|
23 |
"""
|
24 |
Retrieves knowledge from a database with a provided query.
|
25 |
Args:
|
26 |
query (str): The query to search for in the vector store.
|
27 |
n_results (int, optional): The number of results to return. Default is 1.
|
|
|
28 |
"""
|
29 |
try:
|
30 |
from src.utils.vector_store import retrieve_from_database
|
31 |
+
distance_threshold = 0.2
|
32 |
results = retrieve_from_database(
|
33 |
query=query,
|
34 |
n_results=n_results,
|
35 |
distance_threshold=distance_threshold
|
36 |
)
|
37 |
+
#print(results)
|
38 |
return format_the(query, results)
|
39 |
|
40 |
except Exception as e:
|
src/tools/visit_webpage.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from src.utils.tooling import tool
|
2 |
-
from src.utils.vector_store import
|
3 |
|
4 |
|
5 |
|
@@ -19,21 +19,28 @@ def visit_webpage(url: str) -> str:
|
|
19 |
from markdownify import markdownify
|
20 |
from requests.exceptions import RequestException
|
21 |
from smolagents.utils import truncate_content
|
|
|
22 |
|
23 |
except ImportError as e:
|
24 |
raise ImportError(
|
25 |
f"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests` : {e}"
|
26 |
) from e
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
29 |
# Web2LLM app
|
30 |
result = scrape_url(url, clean=True)
|
31 |
markdown_content = html_to_markdown(result["clean_html"])
|
32 |
|
33 |
-
text_embeddings, chunks = vectorize(markdown_content) # Vectorize the content
|
34 |
load_in_vector_db(
|
35 |
-
|
36 |
-
chunks,
|
37 |
metadatas={
|
38 |
"title": result["title"],
|
39 |
"url": url,
|
@@ -48,4 +55,4 @@ def visit_webpage(url: str) -> str:
|
|
48 |
return f"Error fetching the webpage: {str(e)}"
|
49 |
|
50 |
except Exception as e:
|
51 |
-
return f"An unexpected error occurred: {str(e)}"
|
|
|
1 |
from src.utils.tooling import tool
|
2 |
+
from src.utils.vector_store import chunk_content, load_in_vector_db
|
3 |
|
4 |
|
5 |
|
|
|
19 |
from markdownify import markdownify
|
20 |
from requests.exceptions import RequestException
|
21 |
from smolagents.utils import truncate_content
|
22 |
+
from urllib.parse import urlparse
|
23 |
|
24 |
except ImportError as e:
|
25 |
raise ImportError(
|
26 |
f"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests` : {e}"
|
27 |
) from e
|
28 |
|
29 |
+
forbidden_domains = ["universetoday.com"]
|
30 |
+
|
31 |
+
parsed_url = urlparse(url)
|
32 |
+
domain = parsed_url.netloc
|
33 |
+
|
34 |
+
if domain in forbidden_domains:
|
35 |
+
return "This domain is forbidden and cannot be accessed, please try another one."
|
36 |
+
|
37 |
try:
|
38 |
# Web2LLM app
|
39 |
result = scrape_url(url, clean=True)
|
40 |
markdown_content = html_to_markdown(result["clean_html"])
|
41 |
|
|
|
42 |
load_in_vector_db(
|
43 |
+
markdown_content,
|
|
|
44 |
metadatas={
|
45 |
"title": result["title"],
|
46 |
"url": url,
|
|
|
55 |
return f"Error fetching the webpage: {str(e)}"
|
56 |
|
57 |
except Exception as e:
|
58 |
+
return f"An unexpected error occurred: {str(e)}"
|
src/tools/web_search.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from src.utils.tooling import tool
|
2 |
|
3 |
@tool
|
4 |
-
def web_search(query: str, max_results: int = 3, timeout: int =
|
5 |
"""
|
6 |
Performs a web search based on the query and returns the top search results.
|
7 |
Args:
|
|
|
1 |
from src.utils.tooling import tool
|
2 |
|
3 |
@tool
|
4 |
+
def web_search(query: str, max_results: int = 3, timeout: int = 10) -> str:
|
5 |
"""
|
6 |
Performs a web search based on the query and returns the top search results.
|
7 |
Args:
|
src/utils/vector_store.py
CHANGED
@@ -5,35 +5,48 @@ import numpy as np
|
|
5 |
import time
|
6 |
import chromadb
|
7 |
import json
|
|
|
8 |
|
9 |
load_dotenv()
|
10 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
11 |
COLLECTION_NAME = "webpages_collection"
|
12 |
PERSIST_DIRECTORY = "./chroma_db"
|
13 |
|
14 |
-
|
15 |
-
def get_text_embeddings(input_texts):
|
16 |
"""
|
17 |
Get the text embeddings for the given inputs using Mistral API.
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
time.sleep(1)
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
-
def
|
37 |
"""
|
38 |
Vectorizes the given markdown content into chunks of specified size without cutting sentences.
|
39 |
"""
|
@@ -58,83 +71,98 @@ def vectorize(markdown_content, chunk_size=2048):
|
|
58 |
chunks.append(markdown_content[start:end].strip())
|
59 |
start = end
|
60 |
|
61 |
-
|
62 |
-
return np.array(text_embeddings), chunks
|
63 |
-
|
64 |
-
|
65 |
-
def load_in_vector_db(text_embeddings, chunks, metadatas=None, collection_name=COLLECTION_NAME):
|
66 |
-
"""
|
67 |
-
Load the text embeddings into a ChromaDB collection for efficient similarity search.
|
68 |
-
"""
|
69 |
-
client = chromadb.PersistentClient(path=PERSIST_DIRECTORY)
|
70 |
-
|
71 |
-
if collection_name not in [col.name for col in client.list_collections()]:
|
72 |
-
collection = client.create_collection(collection_name)
|
73 |
-
else:
|
74 |
-
collection = client.get_collection(collection_name)
|
75 |
|
76 |
-
existing_items = collection.get()
|
77 |
-
existing_ids = set()
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
for embedding, chunk in zip(text_embeddings, chunks):
|
84 |
-
chunk_id = str(hash(chunk))
|
85 |
-
if chunk_id not in existing_ids:
|
86 |
-
collection.add(
|
87 |
-
embeddings=[embedding],
|
88 |
-
documents=[chunk],
|
89 |
-
metadatas=[metadatas],
|
90 |
-
ids=[chunk_id]
|
91 |
-
)
|
92 |
-
existing_ids.add(chunk_id)
|
93 |
|
94 |
|
95 |
-
def
|
96 |
"""
|
97 |
-
Load the ChromaDB collection
|
98 |
"""
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
print("
|
103 |
return
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
print(f"Items: {items}")
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
print(f"Item: {item}")
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
print(f"Document: {item.get('document')}")
|
119 |
-
print(f"Metadata: {item.get('metadata')}")
|
120 |
-
else:
|
121 |
-
print("Item is not a dictionary")
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
|
126 |
def retrieve_from_database(query, collection_name=COLLECTION_NAME, n_results=5, distance_threshold=None):
|
127 |
"""
|
128 |
Retrieve the most similar documents from the vector store based on the query.
|
129 |
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
if distance_threshold is not None:
|
139 |
filtered_results = {
|
140 |
"ids": [],
|
@@ -155,4 +183,4 @@ def retrieve_from_database(query, collection_name=COLLECTION_NAME, n_results=5,
|
|
155 |
else:
|
156 |
return results
|
157 |
else:
|
158 |
-
return raw_results
|
|
|
5 |
import time
|
6 |
import chromadb
|
7 |
import json
|
8 |
+
import hashlib
|
9 |
|
10 |
load_dotenv()
|
11 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
12 |
COLLECTION_NAME = "webpages_collection"
|
13 |
PERSIST_DIRECTORY = "./chroma_db"
|
14 |
|
15 |
+
def vectorize(input_texts, batch_size=5):
|
|
|
16 |
"""
|
17 |
Get the text embeddings for the given inputs using Mistral API.
|
18 |
"""
|
19 |
+
try:
|
20 |
+
client = Mistral(api_key=MISTRAL_API_KEY)
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error initializing Mistral client: {e}")
|
23 |
+
return []
|
24 |
+
|
25 |
+
embeddings = []
|
26 |
+
|
27 |
+
for i in range(0, len(input_texts), batch_size):
|
28 |
+
batch = input_texts[i:i + batch_size]
|
29 |
+
while True:
|
30 |
+
try:
|
31 |
+
embeddings_batch_response = client.embeddings.create(
|
32 |
+
model="mistral-embed",
|
33 |
+
inputs=batch
|
34 |
+
)
|
35 |
time.sleep(1)
|
36 |
+
embeddings.extend([data.embedding for data in embeddings_batch_response.data])
|
37 |
+
break
|
38 |
+
except Exception as e:
|
39 |
+
if "rate limit exceeded" in str(e).lower():
|
40 |
+
print("Rate limit exceeded. Retrying after 10 seconds...")
|
41 |
+
time.sleep(10)
|
42 |
+
else:
|
43 |
+
print(f"Error in embedding batch: {e}")
|
44 |
+
raise
|
45 |
+
|
46 |
+
return embeddings
|
47 |
|
48 |
|
49 |
+
def chunk_content(markdown_content, chunk_size=2048):
|
50 |
"""
|
51 |
Vectorizes the given markdown content into chunks of specified size without cutting sentences.
|
52 |
"""
|
|
|
71 |
chunks.append(markdown_content[start:end].strip())
|
72 |
start = end
|
73 |
|
74 |
+
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
76 |
|
77 |
+
def generate_chunk_id(chunk):
|
78 |
+
"""Generate a unique ID for a chunk using SHA-256 hash."""
|
79 |
+
return hashlib.sha256(chunk.encode('utf-8')).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
+
def load_in_vector_db(markdown_content, metadatas=None, collection_name=COLLECTION_NAME):
|
83 |
"""
|
84 |
+
Load the text embeddings into a ChromaDB collection for efficient similarity search.
|
85 |
"""
|
86 |
+
try:
|
87 |
+
client = chromadb.PersistentClient(path=PERSIST_DIRECTORY)
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error initializing ChromaDB client: {e}")
|
90 |
return
|
91 |
|
92 |
+
try:
|
93 |
+
if collection_name not in [col.name for col in client.list_collections()]:
|
94 |
+
collection = client.create_collection(collection_name)
|
95 |
+
else:
|
96 |
+
collection = client.get_collection(collection_name)
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error accessing collection: {e}")
|
99 |
+
return
|
100 |
|
101 |
+
try:
|
102 |
+
existing_items = collection.get()
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error retrieving existing items: {e}")
|
105 |
+
return
|
106 |
|
107 |
+
existing_ids = set()
|
|
|
108 |
|
109 |
+
if 'ids' in existing_items:
|
110 |
+
existing_ids.update(existing_items['ids'])
|
|
|
111 |
|
112 |
+
chunks = chunk_content(markdown_content)
|
113 |
+
text_to_vectorize = []
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
for chunk in chunks:
|
116 |
+
chunk_id = generate_chunk_id(chunk)
|
117 |
+
if chunk_id not in existing_ids:
|
118 |
+
text_to_vectorize.append(chunk)
|
119 |
+
|
120 |
+
print(f"New chunks to vectorize: {len(text_to_vectorize)}")
|
121 |
+
|
122 |
+
if text_to_vectorize:
|
123 |
+
embeddings = vectorize(text_to_vectorize)
|
124 |
+
for embedding, chunk in zip(embeddings, text_to_vectorize):
|
125 |
+
chunk_id = generate_chunk_id(chunk)
|
126 |
+
if chunk_id not in existing_ids:
|
127 |
+
try:
|
128 |
+
collection.add(
|
129 |
+
embeddings=[embedding],
|
130 |
+
documents=[chunk],
|
131 |
+
metadatas=[metadatas],
|
132 |
+
ids=[chunk_id]
|
133 |
+
)
|
134 |
+
existing_ids.add(chunk_id)
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error adding embedding to collection: {e}")
|
137 |
|
138 |
|
139 |
def retrieve_from_database(query, collection_name=COLLECTION_NAME, n_results=5, distance_threshold=None):
|
140 |
"""
|
141 |
Retrieve the most similar documents from the vector store based on the query.
|
142 |
"""
|
143 |
+
try:
|
144 |
+
client = chromadb.PersistentClient(path=PERSIST_DIRECTORY)
|
145 |
+
collection = client.get_collection(collection_name)
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error accessing collection: {e}")
|
148 |
+
return
|
149 |
+
|
150 |
+
try:
|
151 |
+
query_embeddings = vectorize([query])
|
152 |
+
except Exception as e:
|
153 |
+
print(f"Error vectorizing query: {e}")
|
154 |
+
return
|
155 |
+
|
156 |
+
try:
|
157 |
+
raw_results = collection.query(
|
158 |
+
query_embeddings=query_embeddings,
|
159 |
+
n_results=n_results,
|
160 |
+
include=["documents", "metadatas", "distances"]
|
161 |
+
)
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error querying collection: {e}")
|
164 |
+
return
|
165 |
+
|
166 |
if distance_threshold is not None:
|
167 |
filtered_results = {
|
168 |
"ids": [],
|
|
|
183 |
else:
|
184 |
return results
|
185 |
else:
|
186 |
+
return raw_results
|
src/workflow.py
CHANGED
@@ -36,7 +36,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
36 |
results_log = []
|
37 |
answers_payload = []
|
38 |
|
39 |
-
#chosen_task_id = "
|
40 |
#questions_data = [item for item in questions_data if item.get("task_id") == chosen_task_id]
|
41 |
|
42 |
for item in questions_data:
|
|
|
36 |
results_log = []
|
37 |
answers_payload = []
|
38 |
|
39 |
+
#chosen_task_id = "8e867cd7-cff9-4e6c-867a-ff5ddc2550be"
|
40 |
#questions_data = [item for item in questions_data if item.get("task_id") == chosen_task_id]
|
41 |
|
42 |
for item in questions_data:
|
tools.json
CHANGED
@@ -48,18 +48,22 @@
|
|
48 |
{
|
49 |
"type": "function",
|
50 |
"function": {
|
51 |
-
"name": "
|
52 |
-
"description": "
|
53 |
"parameters": {
|
54 |
"type": "object",
|
55 |
"properties": {
|
56 |
-
"
|
57 |
"type": "string",
|
58 |
-
"description": "The
|
|
|
|
|
|
|
|
|
59 |
}
|
60 |
},
|
61 |
"required": [
|
62 |
-
"
|
63 |
]
|
64 |
}
|
65 |
}
|
@@ -102,30 +106,6 @@
|
|
102 |
}
|
103 |
}
|
104 |
},
|
105 |
-
{
|
106 |
-
"type": "function",
|
107 |
-
"function": {
|
108 |
-
"name": "analyze_document",
|
109 |
-
"description": "Extracts specific information from a local PDF or local text document based on given keywords.",
|
110 |
-
"parameters": {
|
111 |
-
"type": "object",
|
112 |
-
"properties": {
|
113 |
-
"file_path": {
|
114 |
-
"type": "string",
|
115 |
-
"description": "The path to the PDF or text document to analyze."
|
116 |
-
},
|
117 |
-
"keywords": {
|
118 |
-
"type": "array",
|
119 |
-
"description": "A list of keywords to search for in the document."
|
120 |
-
}
|
121 |
-
},
|
122 |
-
"required": [
|
123 |
-
"file_path",
|
124 |
-
"keywords"
|
125 |
-
]
|
126 |
-
}
|
127 |
-
}
|
128 |
-
},
|
129 |
{
|
130 |
"type": "function",
|
131 |
"function": {
|
@@ -172,20 +152,18 @@
|
|
172 |
"type": "function",
|
173 |
"function": {
|
174 |
"name": "execute_code",
|
175 |
-
"description": "Executes Python code from a file
|
176 |
"parameters": {
|
177 |
"type": "object",
|
178 |
"properties": {
|
179 |
"file_path": {
|
180 |
"type": "string",
|
181 |
"description": "The path to the file containing the Python code to execute."
|
182 |
-
},
|
183 |
-
"code_string": {
|
184 |
-
"type": "string",
|
185 |
-
"description": "The Python code as a string to execute."
|
186 |
}
|
187 |
},
|
188 |
-
"required": [
|
|
|
|
|
189 |
}
|
190 |
}
|
191 |
},
|
@@ -253,32 +231,5 @@
|
|
253 |
]
|
254 |
}
|
255 |
}
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"type": "function",
|
259 |
-
"function": {
|
260 |
-
"name": "retrieve_knowledge",
|
261 |
-
"description": "Retrieves knowledge from a database with a provided query.",
|
262 |
-
"parameters": {
|
263 |
-
"type": "object",
|
264 |
-
"properties": {
|
265 |
-
"query": {
|
266 |
-
"type": "string",
|
267 |
-
"description": "The query to search for in the vector store."
|
268 |
-
},
|
269 |
-
"n_results": {
|
270 |
-
"type": "integer",
|
271 |
-
"description": "The number of results to return. Default is 1."
|
272 |
-
},
|
273 |
-
"distance_threshold": {
|
274 |
-
"type": "number",
|
275 |
-
"description": "The minimum distance score for results. Default is 0.5."
|
276 |
-
}
|
277 |
-
},
|
278 |
-
"required": [
|
279 |
-
"query"
|
280 |
-
]
|
281 |
-
}
|
282 |
-
}
|
283 |
}
|
284 |
]
|
|
|
48 |
{
|
49 |
"type": "function",
|
50 |
"function": {
|
51 |
+
"name": "retrieve_knowledge",
|
52 |
+
"description": "Retrieves knowledge from a database with a provided query.",
|
53 |
"parameters": {
|
54 |
"type": "object",
|
55 |
"properties": {
|
56 |
+
"query": {
|
57 |
"type": "string",
|
58 |
+
"description": "The query to search for in the vector store."
|
59 |
+
},
|
60 |
+
"n_results": {
|
61 |
+
"type": "integer",
|
62 |
+
"description": "The number of results to return. Default is 1."
|
63 |
}
|
64 |
},
|
65 |
"required": [
|
66 |
+
"query"
|
67 |
]
|
68 |
}
|
69 |
}
|
|
|
106 |
}
|
107 |
}
|
108 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
{
|
110 |
"type": "function",
|
111 |
"function": {
|
|
|
152 |
"type": "function",
|
153 |
"function": {
|
154 |
"name": "execute_code",
|
155 |
+
"description": "Executes Python code from a file and returns the final result.",
|
156 |
"parameters": {
|
157 |
"type": "object",
|
158 |
"properties": {
|
159 |
"file_path": {
|
160 |
"type": "string",
|
161 |
"description": "The path to the file containing the Python code to execute."
|
|
|
|
|
|
|
|
|
162 |
}
|
163 |
},
|
164 |
+
"required": [
|
165 |
+
"file_path"
|
166 |
+
]
|
167 |
}
|
168 |
}
|
169 |
},
|
|
|
231 |
]
|
232 |
}
|
233 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
}
|
235 |
]
|