mriusero commited on
Commit
b7d8085
·
1 Parent(s): 81917a3

core: refacto

Browse files
Files changed (6) hide show
  1. app.py +5 -174
  2. requirements.txt +2 -1
  3. src/__init__.py +0 -0
  4. src/agent.py +9 -0
  5. src/api.py +34 -0
  6. src/gradio_ui.py +86 -0
app.py CHANGED
@@ -1,181 +1,11 @@
1
  import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,7 +13,7 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
@@ -193,4 +23,5 @@ if __name__ == "__main__":
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
 
196
  demo.launch(debug=True, share=False)
 
1
  import os
2
+ from src.gradio_ui import create_interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  if __name__ == "__main__":
5
  print("\n" + "-"*30 + " App Starting " + "-"*30)
6
+
7
  space_host_startup = os.getenv("SPACE_HOST")
8
+ space_id_startup = os.getenv("SPACE_ID")
9
 
10
  if space_host_startup:
11
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
13
  else:
14
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
15
 
16
+ if space_id_startup:
17
  print(f"✅ SPACE_ID found: {space_id_startup}")
18
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
19
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
23
  print("-"*(60 + len(" App Starting ")) + "\n")
24
 
25
  print("Launching Gradio Interface for Basic Agent Evaluation...")
26
+ demo = create_interface()
27
  demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  gradio
2
- requests
 
 
1
  gradio
2
+ requests
3
+ gradio[oauth]
src/__init__.py ADDED
File without changes
src/agent.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ class BasicAgent:
2
+ def __init__(self):
3
+ print("BasicAgent initialized.")
4
+
5
+ def __call__(self, question: str) -> str:
6
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
7
+ fixed_answer = "This is a default answer."
8
+ print(f"Agent returning fixed answer: {fixed_answer}")
9
+ return fixed_answer
src/api.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+
3
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
4
+
5
+ def fetch_questions(api_url=DEFAULT_API_URL):
6
+ questions_url = f"{api_url}/questions"
7
+ print(f"Fetching questions from: {questions_url}")
8
+ try:
9
+ response = requests.get(questions_url, timeout=15)
10
+ response.raise_for_status()
11
+ questions_data = response.json()
12
+ if not questions_data:
13
+ print("Fetched questions list is empty.")
14
+ return None
15
+ print(f"Fetched {len(questions_data)} questions.")
16
+ return questions_data
17
+ except requests.exceptions.RequestException as e:
18
+ print(f"Error fetching questions: {e}")
19
+ return None
20
+ except Exception as e:
21
+ print(f"An unexpected error occurred fetching questions: {e}")
22
+ return None
23
+
24
+ def submit_answers(submission_data, api_url=DEFAULT_API_URL):
25
+ submit_url = f"{api_url}/submit"
26
+ print(f"Submitting answers to: {submit_url}")
27
+ try:
28
+ response = requests.post(submit_url, json=submission_data, timeout=60)
29
+ response.raise_for_status()
30
+ result_data = response.json()
31
+ return result_data
32
+ except requests.exceptions.RequestException as e:
33
+ print(f"Submission Failed: {e}")
34
+ return None
src/gradio_ui.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from src.agent import BasicAgent
3
+ from src.api import fetch_questions, submit_answers
4
+ import pandas as pd
5
+ import os
6
+
7
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
8
+ space_id = os.getenv("SPACE_ID")
9
+ if profile:
10
+ username = f"{profile.username}"
11
+ print(f"User logged in: {username}")
12
+ else:
13
+ print("User not logged in.")
14
+ return "Please Login to Hugging Face with the button.", None
15
+
16
+ agent = BasicAgent()
17
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
18
+ print(agent_code)
19
+
20
+ questions_data = fetch_questions()
21
+ if not questions_data:
22
+ return "Failed to fetch questions.", None
23
+
24
+ results_log = []
25
+ answers_payload = []
26
+ for item in questions_data:
27
+ task_id = item.get("task_id")
28
+ question_text = item.get("question")
29
+ if not task_id or question_text is None:
30
+ continue
31
+ try:
32
+ submitted_answer = agent(question_text)
33
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
34
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
35
+ except Exception as e:
36
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
37
+
38
+ if not answers_payload:
39
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
40
+
41
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
42
+ result_data = submit_answers(submission_data)
43
+
44
+ if result_data:
45
+ final_status = (
46
+ f"Submission Successful!\n"
47
+ f"User: {result_data.get('username')}\n"
48
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
49
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
50
+ f"Message: {result_data.get('message', 'No message received.')}"
51
+ )
52
+ results_df = pd.DataFrame(results_log)
53
+ return final_status, results_df
54
+ else:
55
+ return "Submission Failed.", pd.DataFrame(results_log)
56
+
57
+ def create_interface():
58
+ with gr.Blocks() as demo:
59
+ gr.Markdown("# Basic Agent Evaluation Runner")
60
+ gr.Markdown(
61
+ """
62
+ **Instructions:**
63
+
64
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
65
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
66
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
67
+
68
+ ---
69
+ **Disclaimers:**
70
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
71
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
72
+ """
73
+ )
74
+
75
+ gr.LoginButton()
76
+
77
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
78
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
79
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
80
+
81
+ run_button.click(
82
+ fn=run_and_submit_all,
83
+ outputs=[status_output, results_table]
84
+ )
85
+
86
+ return demo