Spaces:
Sleeping
Sleeping
mriusero
commited on
Commit
·
e55813a
1
Parent(s):
626c449
feat: scaling
Browse files- src/production/flow.py +1 -1
- src/ui/dashboard.py +52 -19
src/production/flow.py
CHANGED
@@ -83,7 +83,7 @@ async def generate_data(state):
|
|
83 |
|
84 |
print(f" - part {part_id} data generated")
|
85 |
part_id += 1
|
86 |
-
await asyncio.sleep(0.
|
87 |
|
88 |
current_time += timedelta(seconds=1)
|
89 |
|
|
|
83 |
|
84 |
print(f" - part {part_id} data generated")
|
85 |
part_id += 1
|
86 |
+
await asyncio.sleep(0.2)
|
87 |
|
88 |
current_time += timedelta(seconds=1)
|
89 |
|
src/ui/dashboard.py
CHANGED
@@ -7,7 +7,11 @@ from src.production.metrics.tools import tools_metrics
|
|
7 |
from src.production.metrics.machine import machine_metrics, fetch_issues
|
8 |
from src.ui.graphs.tools_graphs import ToolMetricsDisplay
|
9 |
|
|
|
10 |
async def dataflow(state):
|
|
|
|
|
|
|
11 |
if 'tools' not in state['data']:
|
12 |
state['data']['tools'] = {}
|
13 |
|
@@ -21,7 +25,7 @@ async def dataflow(state):
|
|
21 |
|
22 |
raw_data = state['data'].get('raw_df', pd.DataFrame())
|
23 |
if raw_data.empty:
|
24 |
-
return pd.DataFrame()
|
25 |
|
26 |
tools_data = await tools_metrics(raw_data)
|
27 |
tools_data = {tool: df for tool, df in tools_data.items() if not df.empty}
|
@@ -30,34 +34,63 @@ async def dataflow(state):
|
|
30 |
|
31 |
machine_data = await machine_metrics(raw_data)
|
32 |
state['efficiency'] = machine_data
|
|
|
33 |
issues = await fetch_issues(raw_data)
|
34 |
state['data']['issues'] = issues
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
display = ToolMetricsDisplay()
|
41 |
-
plots =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
async def on_tick(state):
|
44 |
-
df1 = await dataflow(state)
|
45 |
-
updated = [
|
46 |
-
display.normal_curve(df1, cote='pos'),
|
47 |
-
display.gauge(df1, type='cp', cote='pos'),
|
48 |
-
display.gauge(df1, type='cpk', cote='pos'),
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
display.control_graph(df1),
|
55 |
-
]
|
56 |
-
return updated + [state]
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
timer.tick(
|
60 |
fn=on_tick,
|
61 |
inputs=[state],
|
62 |
-
outputs=
|
63 |
)
|
|
|
7 |
from src.production.metrics.machine import machine_metrics, fetch_issues
|
8 |
from src.ui.graphs.tools_graphs import ToolMetricsDisplay
|
9 |
|
10 |
+
|
11 |
async def dataflow(state):
|
12 |
+
"""
|
13 |
+
Main dataflow function that processes raw production data and updates the state with tool metrics, machine efficiency, and issues.
|
14 |
+
"""
|
15 |
if 'tools' not in state['data']:
|
16 |
state['data']['tools'] = {}
|
17 |
|
|
|
25 |
|
26 |
raw_data = state['data'].get('raw_df', pd.DataFrame())
|
27 |
if raw_data.empty:
|
28 |
+
return [pd.DataFrame()] * 4
|
29 |
|
30 |
tools_data = await tools_metrics(raw_data)
|
31 |
tools_data = {tool: df for tool, df in tools_data.items() if not df.empty}
|
|
|
34 |
|
35 |
machine_data = await machine_metrics(raw_data)
|
36 |
state['efficiency'] = machine_data
|
37 |
+
|
38 |
issues = await fetch_issues(raw_data)
|
39 |
state['data']['issues'] = issues
|
40 |
|
41 |
+
return [
|
42 |
+
pd.DataFrame(state['data']['tools'].get(f'tool_{i}', pd.DataFrame()))
|
43 |
+
for i in range(1, 5)
|
44 |
+
]
|
45 |
|
46 |
+
|
47 |
+
def create_display_and_plots(df):
|
48 |
+
"""
|
49 |
+
Create a ToolMetricsDisplay instance and generate plots for the provided DataFrame.
|
50 |
+
"""
|
51 |
display = ToolMetricsDisplay()
|
52 |
+
plots = [
|
53 |
+
display.normal_curve(df, cote='pos'),
|
54 |
+
display.gauge(df, type='cp', cote='pos'),
|
55 |
+
display.gauge(df, type='cpk', cote='pos'),
|
56 |
+
display.normal_curve(df, cote='ori'),
|
57 |
+
display.gauge(df, type='cp', cote='ori'),
|
58 |
+
display.gauge(df, type='cpk', cote='ori'),
|
59 |
+
display.control_graph(df),
|
60 |
+
]
|
61 |
+
return display, plots
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def init_displays_and_blocks(n=4):
|
65 |
+
"""
|
66 |
+
Initialize a list of ToolMetricsDisplay instances and their corresponding blocks.
|
67 |
+
"""
|
68 |
+
displays = []
|
69 |
+
blocks = []
|
70 |
+
for i in range(1, n + 1):
|
71 |
+
display = ToolMetricsDisplay()
|
72 |
+
displays.append(display)
|
73 |
+
blocks.extend(display.tool_block(df=pd.DataFrame(), id=i))
|
74 |
+
return displays, blocks
|
75 |
|
|
|
|
|
|
|
76 |
|
77 |
+
def dashboard_ui(state):
|
78 |
+
"""
|
79 |
+
Create the Gradio UI for the dashboard, initializing displays and setting up the dataflow.
|
80 |
+
"""
|
81 |
+
displays, initial_plots = init_displays_and_blocks()
|
82 |
+
|
83 |
+
async def on_tick(state):
|
84 |
+
dfs = await dataflow(state)
|
85 |
+
all_plots = []
|
86 |
+
for df in dfs:
|
87 |
+
_, plots = create_display_and_plots(df)
|
88 |
+
all_plots.extend(plots)
|
89 |
+
return all_plots + [state]
|
90 |
+
|
91 |
+
timer = gr.Timer(0.1)
|
92 |
timer.tick(
|
93 |
fn=on_tick,
|
94 |
inputs=[state],
|
95 |
+
outputs=initial_plots + [state]
|
96 |
)
|