Spaces:
Running
Running
mriusero
commited on
Commit
·
f5f591a
1
Parent(s):
0156020
core: data shape
Browse files- app.py +4 -3
- src/production/flow.py +2 -2
- src/production/metrics/machine.py +13 -4
- src/ui/dashboard.py +37 -15
- src/ui/graphs/general_graphs.py +16 -16
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
from src.ui import sidebar_ui, dashboard_ui
|
4 |
from src.ui.session import session_state
|
@@ -12,10 +13,10 @@ custom_theme = gr.themes.Base(
|
|
12 |
|
13 |
STATE = {
|
14 |
"running": False,
|
15 |
-
"
|
16 |
-
"part_id":
|
|
|
17 |
"data": {},
|
18 |
-
"efficiency": {},
|
19 |
}
|
20 |
|
21 |
with gr.Blocks(theme=custom_theme) as demo:
|
|
|
1 |
import gradio as gr
|
2 |
+
from datetime import datetime
|
3 |
|
4 |
from src.ui import sidebar_ui, dashboard_ui
|
5 |
from src.ui.session import session_state
|
|
|
13 |
|
14 |
STATE = {
|
15 |
"running": False,
|
16 |
+
"date": datetime.now(),
|
17 |
+
"part_id": 0,
|
18 |
+
"status": {},
|
19 |
"data": {},
|
|
|
20 |
}
|
21 |
|
22 |
with gr.Blocks(theme=custom_theme) as demo:
|
src/production/flow.py
CHANGED
@@ -13,7 +13,7 @@ async def generate_data(state):
|
|
13 |
"""
|
14 |
Generate synthetic production data for a manufacturing process.
|
15 |
"""
|
16 |
-
current_time = state["
|
17 |
part_id = state["part_id"] if state["part_id"] else 0
|
18 |
|
19 |
non_compliance_rates = {
|
@@ -95,5 +95,5 @@ async def generate_data(state):
|
|
95 |
|
96 |
current_time += timedelta(seconds=1)
|
97 |
|
98 |
-
state["
|
99 |
state["part_id"] = part_id
|
|
|
13 |
"""
|
14 |
Generate synthetic production data for a manufacturing process.
|
15 |
"""
|
16 |
+
current_time = state["date"] if state["date"] else datetime.now()
|
17 |
part_id = state["part_id"] if state["part_id"] else 0
|
18 |
|
19 |
non_compliance_rates = {
|
|
|
95 |
|
96 |
current_time += timedelta(seconds=1)
|
97 |
|
98 |
+
state["date"] = current_time
|
99 |
state["part_id"] = part_id
|
src/production/metrics/machine.py
CHANGED
@@ -35,6 +35,14 @@ async def machine_metrics(raw_data):
|
|
35 |
mtbf = operating_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
36 |
mttr = unplanned_stop_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return {
|
39 |
"opening_time": str(opening_time),
|
40 |
"required_time": str(required_time),
|
@@ -42,10 +50,11 @@ async def machine_metrics(raw_data):
|
|
42 |
"operating_time": str(operating_time),
|
43 |
"net_time": str(net_time),
|
44 |
"useful_time": str(useful_time),
|
45 |
-
"quality_rate": quality_rate,
|
46 |
-
|
47 |
-
"
|
48 |
-
"
|
|
|
49 |
"MTBF": str(mtbf),
|
50 |
"MTTR": str(mttr)
|
51 |
}
|
|
|
35 |
mtbf = operating_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
36 |
mttr = unplanned_stop_time / downtime_count if downtime_count > 0 else pd.Timedelta(0)
|
37 |
|
38 |
+
# Quality rate per tool ID
|
39 |
+
quality_by_tool = {}
|
40 |
+
for tool_id in [1, 2]:
|
41 |
+
tool_df = df[df["Tool ID"] == tool_id]
|
42 |
+
total = len(tool_df)
|
43 |
+
ok_count = (tool_df["Compliance"] == "OK").sum()
|
44 |
+
quality_by_tool[f"quality_rate_tool_{tool_id}"] = round(((ok_count / total) * 100), 2) if total > 0 else 0
|
45 |
+
|
46 |
return {
|
47 |
"opening_time": str(opening_time),
|
48 |
"required_time": str(required_time),
|
|
|
50 |
"operating_time": str(operating_time),
|
51 |
"net_time": str(net_time),
|
52 |
"useful_time": str(useful_time),
|
53 |
+
"quality_rate": round(quality_rate, 2),
|
54 |
+
**quality_by_tool,
|
55 |
+
"operating_rate": round(operating_rate, 2),
|
56 |
+
"availability_rate": round(availability_rate, 2),
|
57 |
+
"OEE": round(OEE, 2),
|
58 |
"MTBF": str(mtbf),
|
59 |
"MTTR": str(mttr)
|
60 |
}
|
src/ui/dashboard.py
CHANGED
@@ -31,7 +31,7 @@ async def dataflow(state):
|
|
31 |
state['data']['tools'].setdefault(f'tool_{i}', pd.DataFrame())
|
32 |
|
33 |
state['data'].setdefault('issues', {})
|
34 |
-
state.setdefault('
|
35 |
|
36 |
# Check running state
|
37 |
if state.get('running'):
|
@@ -64,7 +64,7 @@ async def dataflow(state):
|
|
64 |
] + [
|
65 |
pd.DataFrame(state['data']['issues'])
|
66 |
] + [
|
67 |
-
state['
|
68 |
]
|
69 |
state['last_hash'] = current_hash
|
70 |
|
@@ -74,12 +74,38 @@ async def dataflow(state):
|
|
74 |
for tool, df in tools_data.items():
|
75 |
state['data']['tools'][tool] = df
|
76 |
|
|
|
77 |
machine_data = await machine_metrics(raw_data)
|
78 |
-
state['
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
issues = await fetch_issues(raw_data)
|
81 |
state['data']['issues'] = issues
|
82 |
|
|
|
83 |
return (
|
84 |
[
|
85 |
pd.DataFrame(state['data']['tools'].get(f'tool_{i}', pd.DataFrame()))
|
@@ -89,7 +115,7 @@ async def dataflow(state):
|
|
89 |
] + [
|
90 |
pd.DataFrame(state['data']['issues'])
|
91 |
] + [
|
92 |
-
state['
|
93 |
]
|
94 |
)
|
95 |
|
@@ -108,20 +134,18 @@ def init_components(n=TOOLS_COUNT):
|
|
108 |
tool_plots = []
|
109 |
general_plots = []
|
110 |
|
111 |
-
# Tool metrics displays
|
112 |
-
for i in range(1, n + 1):
|
113 |
display = ToolMetricsDisplay()
|
114 |
displays.append(display)
|
115 |
tool_plots.extend(display.tool_block(df=pd.DataFrame(), id=i))
|
116 |
|
117 |
-
# General metrics display
|
118 |
-
main_display = GeneralMetricsDisplay()
|
119 |
displays.append(main_display)
|
120 |
general_plots.extend(
|
121 |
main_display.general_block(
|
122 |
all_tools_df=pd.DataFrame(),
|
123 |
issues_df=pd.DataFrame(),
|
124 |
-
|
125 |
)
|
126 |
)
|
127 |
return displays, tool_plots, general_plots
|
@@ -141,18 +165,16 @@ async def on_tick(state, displays):
|
|
141 |
tool_dfs = data[:-3] # all individual tool DataFrames
|
142 |
all_tools_df = data[-3] # 'all' tools DataFrame
|
143 |
issues_df = data[-2] # issues DataFrame
|
144 |
-
|
145 |
|
146 |
-
# General plots
|
147 |
-
general_display = displays[-1]
|
148 |
general_plots = general_display.refresh(
|
149 |
all_tools_df=all_tools_df,
|
150 |
issues_df=issues_df,
|
151 |
-
|
152 |
)
|
153 |
|
154 |
-
# Tool-specific plots
|
155 |
-
tool_plots = []
|
156 |
for df, display in zip(tool_dfs, displays[:-1]):
|
157 |
tool_plots.extend(display.refresh(df=df))
|
158 |
|
|
|
31 |
state['data']['tools'].setdefault(f'tool_{i}', pd.DataFrame())
|
32 |
|
33 |
state['data'].setdefault('issues', {})
|
34 |
+
state.setdefault('status', {})
|
35 |
|
36 |
# Check running state
|
37 |
if state.get('running'):
|
|
|
64 |
] + [
|
65 |
pd.DataFrame(state['data']['issues'])
|
66 |
] + [
|
67 |
+
state['status']
|
68 |
]
|
69 |
state['last_hash'] = current_hash
|
70 |
|
|
|
74 |
for tool, df in tools_data.items():
|
75 |
state['data']['tools'][tool] = df
|
76 |
|
77 |
+
# Get machine metrics
|
78 |
machine_data = await machine_metrics(raw_data)
|
79 |
+
state['status'] = machine_data
|
80 |
|
81 |
+
# Get tools stats
|
82 |
+
for tool in ['tool_1', 'tool_2', 'all']:
|
83 |
+
df = state['data']['tools'].get(tool, pd.DataFrame())
|
84 |
+
if df.empty or 'Timestamp' not in df.columns:
|
85 |
+
continue
|
86 |
+
|
87 |
+
df = df.copy()
|
88 |
+
df['Timestamp'] = pd.to_datetime(df['Timestamp'], errors='coerce')
|
89 |
+
df.dropna(subset=['Timestamp'], inplace=True)
|
90 |
+
|
91 |
+
if df.empty:
|
92 |
+
continue
|
93 |
+
|
94 |
+
idx = df['Timestamp'].idxmax()
|
95 |
+
|
96 |
+
for cote in ['pos', 'ori']:
|
97 |
+
for metric_type in ['cp', 'cpk']:
|
98 |
+
column = f"{cote}_rolling_{metric_type}"
|
99 |
+
if column in df.columns:
|
100 |
+
value = df.at[idx, column]
|
101 |
+
key = f"{tool}_{metric_type}_{cote}"
|
102 |
+
state['status'][key] = round(value, 4)
|
103 |
+
|
104 |
+
# Get issues
|
105 |
issues = await fetch_issues(raw_data)
|
106 |
state['data']['issues'] = issues
|
107 |
|
108 |
+
# Update situation
|
109 |
return (
|
110 |
[
|
111 |
pd.DataFrame(state['data']['tools'].get(f'tool_{i}', pd.DataFrame()))
|
|
|
115 |
] + [
|
116 |
pd.DataFrame(state['data']['issues'])
|
117 |
] + [
|
118 |
+
state['status']
|
119 |
]
|
120 |
)
|
121 |
|
|
|
134 |
tool_plots = []
|
135 |
general_plots = []
|
136 |
|
137 |
+
for i in range(1, n + 1): # Tool metrics displays
|
|
|
138 |
display = ToolMetricsDisplay()
|
139 |
displays.append(display)
|
140 |
tool_plots.extend(display.tool_block(df=pd.DataFrame(), id=i))
|
141 |
|
142 |
+
main_display = GeneralMetricsDisplay() # General metrics display
|
|
|
143 |
displays.append(main_display)
|
144 |
general_plots.extend(
|
145 |
main_display.general_block(
|
146 |
all_tools_df=pd.DataFrame(),
|
147 |
issues_df=pd.DataFrame(),
|
148 |
+
status={}
|
149 |
)
|
150 |
)
|
151 |
return displays, tool_plots, general_plots
|
|
|
165 |
tool_dfs = data[:-3] # all individual tool DataFrames
|
166 |
all_tools_df = data[-3] # 'all' tools DataFrame
|
167 |
issues_df = data[-2] # issues DataFrame
|
168 |
+
status = data[-1] # status dict
|
169 |
|
170 |
+
general_display = displays[-1] # General plots
|
|
|
171 |
general_plots = general_display.refresh(
|
172 |
all_tools_df=all_tools_df,
|
173 |
issues_df=issues_df,
|
174 |
+
status=status
|
175 |
)
|
176 |
|
177 |
+
tool_plots = [] # Tool-specific plots
|
|
|
178 |
for df, display in zip(tool_dfs, displays[:-1]):
|
179 |
tool_plots.extend(display.refresh(df=df))
|
180 |
|
src/ui/graphs/general_graphs.py
CHANGED
@@ -209,7 +209,7 @@ class GeneralMetricsDisplay:
|
|
209 |
)
|
210 |
return fig
|
211 |
|
212 |
-
def general_block(self, all_tools_df, issues_df,
|
213 |
header = f"Metrics Summary"
|
214 |
html_content = f"""
|
215 |
<div style="display: flex; align-items: center; justify-content: flex-start; width: 100%;">
|
@@ -225,24 +225,24 @@ class GeneralMetricsDisplay:
|
|
225 |
total_count = gr.Plot(
|
226 |
self.kpi_value(
|
227 |
value=self.get_max_part_id(all_tools_df),
|
228 |
-
title="Total Count"
|
229 |
)
|
230 |
)
|
231 |
total_time = gr.Plot(
|
232 |
self.kpi_value(
|
233 |
-
value=
|
234 |
title="Total Time"
|
235 |
)
|
236 |
)
|
237 |
mtbf_plot = gr.Plot(
|
238 |
self.kpi_value(
|
239 |
-
value=
|
240 |
title="MTBF"
|
241 |
)
|
242 |
)
|
243 |
mttr_plot = gr.Plot(
|
244 |
self.kpi_value(
|
245 |
-
value=
|
246 |
title="MTTR"
|
247 |
)
|
248 |
)
|
@@ -252,21 +252,21 @@ class GeneralMetricsDisplay:
|
|
252 |
with gr.Row(height=150):
|
253 |
oee_plot = gr.Plot(
|
254 |
self.kpi_rate(
|
255 |
-
percentage=
|
256 |
title="OEE"
|
257 |
)
|
258 |
)
|
259 |
with gr.Row(height=150):
|
260 |
quality_rate_plot = gr.Plot(
|
261 |
self.kpi_rate(
|
262 |
-
percentage=
|
263 |
title="Quality Rate"
|
264 |
)
|
265 |
)
|
266 |
with gr.Row(height=150):
|
267 |
availability_plot = gr.Plot(
|
268 |
self.kpi_rate(
|
269 |
-
percentage=
|
270 |
title="Availability"
|
271 |
)
|
272 |
)
|
@@ -284,14 +284,14 @@ class GeneralMetricsDisplay:
|
|
284 |
]
|
285 |
return self.plots
|
286 |
|
287 |
-
def refresh(self, all_tools_df, issues_df,
|
288 |
return [
|
289 |
-
self.kpi_value(value=self.get_max_part_id(all_tools_df), title="Total Count"),
|
290 |
-
self.kpi_value(value=
|
291 |
-
self.kpi_rate(percentage=
|
292 |
-
self.kpi_rate(percentage=
|
293 |
-
self.kpi_rate(percentage=
|
294 |
-
self.kpi_value(value=
|
295 |
-
self.kpi_value(value=
|
296 |
self.pareto(issues_df, error_col='Error Code')
|
297 |
]
|
|
|
209 |
)
|
210 |
return fig
|
211 |
|
212 |
+
def general_block(self, all_tools_df, issues_df, status):
|
213 |
header = f"Metrics Summary"
|
214 |
html_content = f"""
|
215 |
<div style="display: flex; align-items: center; justify-content: flex-start; width: 100%;">
|
|
|
225 |
total_count = gr.Plot(
|
226 |
self.kpi_value(
|
227 |
value=self.get_max_part_id(all_tools_df),
|
228 |
+
title="Total Count (parts)"
|
229 |
)
|
230 |
)
|
231 |
total_time = gr.Plot(
|
232 |
self.kpi_value(
|
233 |
+
value=status.get("opening_time", "0 days 00:00:00"),
|
234 |
title="Total Time"
|
235 |
)
|
236 |
)
|
237 |
mtbf_plot = gr.Plot(
|
238 |
self.kpi_value(
|
239 |
+
value=status.get("MTBF", "0 days 00:00:00"),
|
240 |
title="MTBF"
|
241 |
)
|
242 |
)
|
243 |
mttr_plot = gr.Plot(
|
244 |
self.kpi_value(
|
245 |
+
value=status.get("MTTR", "0 days 00:00:00"),
|
246 |
title="MTTR"
|
247 |
)
|
248 |
)
|
|
|
252 |
with gr.Row(height=150):
|
253 |
oee_plot = gr.Plot(
|
254 |
self.kpi_rate(
|
255 |
+
percentage=status.get('OEE', 0),
|
256 |
title="OEE"
|
257 |
)
|
258 |
)
|
259 |
with gr.Row(height=150):
|
260 |
quality_rate_plot = gr.Plot(
|
261 |
self.kpi_rate(
|
262 |
+
percentage=status.get("quality_rate", 0),
|
263 |
title="Quality Rate"
|
264 |
)
|
265 |
)
|
266 |
with gr.Row(height=150):
|
267 |
availability_plot = gr.Plot(
|
268 |
self.kpi_rate(
|
269 |
+
percentage=status.get("availability_rate", 0),
|
270 |
title="Availability"
|
271 |
)
|
272 |
)
|
|
|
284 |
]
|
285 |
return self.plots
|
286 |
|
287 |
+
def refresh(self, all_tools_df, issues_df, status):
|
288 |
return [
|
289 |
+
self.kpi_value(value=self.get_max_part_id(all_tools_df), title="Total Count (parts)"),
|
290 |
+
self.kpi_value(value=status.get("opening_time", "0 days 00:00:00"), title="Total Time"),
|
291 |
+
self.kpi_rate(percentage=status.get('OEE', 0), title="OEE"),
|
292 |
+
self.kpi_rate(percentage=status.get("quality_rate", 0), title="Quality Rate"),
|
293 |
+
self.kpi_rate(percentage=status.get("availability_rate", 0), title="Availability"),
|
294 |
+
self.kpi_value(value=status.get("MTBF", "0 days 00:00:00"), title="MTBF"),
|
295 |
+
self.kpi_value(value=status.get("MTTR", "0 days 00:00:00"), title="MTTR"),
|
296 |
self.pareto(issues_df, error_col='Error Code')
|
297 |
]
|