python code added
Browse files- app.py +28 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Loading Llama model
|
6 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name, device_map="auto", torch_dtype=torch.float16
|
10 |
+
)
|
11 |
+
|
12 |
+
# Answer generation
|
13 |
+
def generate_response(prompt):
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
15 |
+
outputs = model.generate(inputs.input_ids, max_length=200, temperature=0.7)
|
16 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
|
18 |
+
# Gradio interface
|
19 |
+
demo = gr.Interface(
|
20 |
+
fn=generate_response,
|
21 |
+
inputs="text",
|
22 |
+
outputs="text",
|
23 |
+
title="Llama Chatbot",
|
24 |
+
description="Chatbot Llama-2-7b-hf",
|
25 |
+
)
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|