Spaces:
Sleeping
Sleeping
File size: 8,174 Bytes
982865f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
from os.path import join
import argparse
import numpy as np
import cv2
import torch
from tqdm import tqdm
from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
from models.retinaface import RetinaFace
from utils.box_utils import decode
np.random.seed(0)
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
def f(x): return x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(
pretrained_path, map_location=lambda storage, loc: storage)
else:
pretrained_dict = torch.load(
pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(
pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
model.to(device)
return model
def detect(img_list, output_path, resize=1):
os.makedirs(output_path, exist_ok=True)
im_height, im_width, _ = img_list[0].shape
scale = torch.Tensor([im_width, im_height, im_width, im_height])
img_x = torch.stack(img_list, dim=0).permute([0, 3, 1, 2])
scale = scale.to(device)
# batch size
batch_size = args.bs
# forward times
f_times = img_x.shape[0] // batch_size
if img_x.shape[0] % batch_size != 0:
f_times += 1
locs_list = list()
confs_list = list()
for _ in range(f_times):
if _ != f_times - 1:
batch_img_x = img_x[_ * batch_size:(_ + 1) * batch_size]
else:
batch_img_x = img_x[_ * batch_size:] # last batch
batch_img_x = batch_img_x.to(device).float()
l, c, _ = net(batch_img_x)
locs_list.append(l)
confs_list.append(c)
locs = torch.cat(locs_list, dim=0)
confs = torch.cat(confs_list, dim=0)
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
img_cpu = img_x.permute([0, 2, 3, 1]).cpu().numpy()
i = 0
for img, loc, conf in zip(img_cpu, locs, confs):
boxes = decode(loc.data, prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.data.cpu().numpy()[:, 1]
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(
np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
dets = dets[keep, :]
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
if len(dets) == 0:
continue
det = list(map(int, dets[0]))
x, y, size_bb_x, size_bb_y = get_boundingbox(det, img.shape[1], img.shape[0])
cropped_img = img[y:y + size_bb_y, x:x + size_bb_x, :] + (104, 117, 123)
cv2.imwrite(join(output_path, '{:04d}.png'.format(i)), cropped_img)
i += 1
pass
def extract_frames(data_path, interval=1):
"""Method to extract frames"""
if data_path.split('.')[-1] == "mp4":
reader = cv2.VideoCapture(data_path)
frame_num = 0
frames = list()
while reader.isOpened():
success, image = reader.read()
if not success:
break
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = torch.tensor(image) - torch.tensor([104, 117, 123])
if frame_num % interval == 0:
frames.append(image)
frame_num += 1
if len(frames) > args.max_frames:
break
reader.release()
if len(frames) > args.max_frames:
samples = np.random.choice(
np.arange(0, len(frames)), size=args.max_frames, replace=False)
return [frames[_] for _ in samples]
return frames
else:
image = cv2.imread(data_path)
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = torch.tensor(image) - torch.tensor([104, 117, 123])
return [image]
def get_boundingbox(bbox, width, height, scale=1.8, minsize=None):
x1 = bbox[0]
y1 = bbox[1]
x2 = bbox[2]
y2 = bbox[3]
size_bb_x = int((x2 - x1) * scale)
size_bb_y = int((y2 - y1) * scale)
if minsize:
if size_bb_x < minsize:
size_bb_x = minsize
if size_bb_y < minsize:
size_bb_y = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb_x // 2), 0)
y1 = max(int(center_y - size_bb_y // 2), 0)
# Check for too big bb size for given x, y
size_bb_x = min(width - x1, size_bb_x)
size_bb_y = min(height - y1, size_bb_y)
return x1, y1, size_bb_x, size_bb_y
def extract_method_videos(data_path, interval):
video = data_path.split('/')[-1]
result_path = '/'.join(data_path.split('/')[:-1])
images_path = join(result_path, 'images')
image_folder = video.split('.')[0]
try:
print(data_path)
image_list = extract_frames(data_path, interval)
detect(image_list, join(images_path, image_folder))
except Exception as ex:
f = open("failure.txt", "a", encoding="utf-8")
f.writelines(image_folder +
f" Exception for {image_folder}: {ex}\n")
f.close()
if __name__ == '__main__':
p = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument('--data_path', '-p', type=str, help='path to the data')
p.add_argument('--confidence_threshold', default=0.05,
type=float, help='confidence threshold')
p.add_argument('--top_k', default=5, type=int, help='top_k')
p.add_argument('--nms_threshold', default=0.4,
type=float, help='nms threshold')
p.add_argument('--keep_top_k', default=1, type=int, help='keep_top_k')
p.add_argument('--bs', default=32, type=int, help='batch size')
p.add_argument('--frame_interval', '-fi', default=1, type=int, help='frame interval')
p.add_argument('--device', "-d", default="cuda:0", type=str, help='device')
p.add_argument('--max_frames', default=100, type=int, help='maximum frames per video')
args = p.parse_args()
torch.set_grad_enabled(False)
# use resnet-50
cfg = cfg_re50
pretrained_weights = './weights/Resnet50_Final.pth'
torch.backends.cudnn.benchmark = True
device = torch.device(args.device)
print(device)
# net and model
net = RetinaFace(cfg=cfg, phase='test')
net = load_model(net, pretrained_weights, args.device)
net.eval()
print('Finished loading model!')
extract_method_videos(args.data_path, args.frame_interval) |