Spaces:
Sleeping
Sleeping
File size: 7,411 Bytes
982865f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import torch
import torch.nn as nn
import torch.nn.functional as F
def freeze_weights(module):
for param in module.parameters():
param.requires_grad = False
def l1_regularize(module):
reg_loss = 0.
for key, param in module.reg_params.items():
if "weight" in key and param.requires_grad:
reg_loss += torch.sum(torch.abs(param))
return reg_loss
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation,
groups=in_channels, bias=bias)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, in_channels, out_channels, reps, strides=1,
start_with_relu=True, grow_first=True, with_bn=True):
super(Block, self).__init__()
self.with_bn = with_bn
if out_channels != in_channels or strides != 1:
self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False)
if with_bn:
self.skipbn = nn.BatchNorm2d(out_channels)
else:
self.skip = None
rep = []
for i in range(reps):
if grow_first:
inc = in_channels if i == 0 else out_channels
outc = out_channels
else:
inc = in_channels
outc = in_channels if i < (reps - 1) else out_channels
rep.append(nn.ReLU(inplace=True))
rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1))
if with_bn:
rep.append(nn.BatchNorm2d(outc))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3, strides, 1))
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
if self.with_bn:
skip = self.skipbn(skip)
else:
skip = inp
x += skip
return x
class GraphReasoning(nn.Module):
""" Graph Reasoning Module for information aggregation. """
def __init__(self, va_in, va_out, vb_in, vb_out, vc_in, vc_out, spatial_ratio, drop_rate):
super(GraphReasoning, self).__init__()
self.ratio = spatial_ratio
self.va_embedding = nn.Sequential(
nn.Conv2d(va_in, va_out, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(va_out, va_out, 1, bias=False),
)
self.va_gated_b = nn.Sequential(
nn.Conv2d(va_in, va_out, 1, bias=False),
nn.Sigmoid()
)
self.va_gated_c = nn.Sequential(
nn.Conv2d(va_in, va_out, 1, bias=False),
nn.Sigmoid()
)
self.vb_embedding = nn.Sequential(
nn.Linear(vb_in, vb_out, bias=False),
nn.ReLU(True),
nn.Linear(vb_out, vb_out, bias=False),
)
self.vc_embedding = nn.Sequential(
nn.Linear(vc_in, vc_out, bias=False),
nn.ReLU(True),
nn.Linear(vc_out, vc_out, bias=False),
)
self.unfold_b = nn.Unfold(kernel_size=spatial_ratio[0], stride=spatial_ratio[0])
self.unfold_c = nn.Unfold(kernel_size=spatial_ratio[1], stride=spatial_ratio[1])
self.reweight_ab = nn.Sequential(
nn.Linear(va_out + vb_out, 1, bias=False),
nn.ReLU(True),
nn.Softmax(dim=1)
)
self.reweight_ac = nn.Sequential(
nn.Linear(va_out + vc_out, 1, bias=False),
nn.ReLU(True),
nn.Softmax(dim=1)
)
self.reproject = nn.Sequential(
nn.Conv2d(va_out + vb_out + vc_out, va_in, kernel_size=1, bias=False),
nn.ReLU(True),
nn.Conv2d(va_in, va_in, kernel_size=1, bias=False),
nn.Dropout(drop_rate) if drop_rate is not None else nn.Identity(),
)
def forward(self, vert_a, vert_b, vert_c):
emb_vert_a = self.va_embedding(vert_a)
emb_vert_a = emb_vert_a.reshape([emb_vert_a.shape[0], emb_vert_a.shape[1], -1])
gate_vert_b = 1 - self.va_gated_b(vert_a)
gate_vert_b = gate_vert_b.reshape(*emb_vert_a.shape)
gate_vert_c = 1 - self.va_gated_c(vert_a)
gate_vert_c = gate_vert_c.reshape(*emb_vert_a.shape)
vert_b = self.unfold_b(vert_b).reshape(
[vert_b.shape[0], vert_b.shape[1], self.ratio[0] * self.ratio[0], -1])
vert_b = vert_b.permute([0, 2, 3, 1])
emb_vert_b = self.vb_embedding(vert_b)
vert_c = self.unfold_c(vert_c).reshape(
[vert_c.shape[0], vert_c.shape[1], self.ratio[1] * self.ratio[1], -1])
vert_c = vert_c.permute([0, 2, 3, 1])
emb_vert_c = self.vc_embedding(vert_c)
agg_vb = list()
agg_vc = list()
for j in range(emb_vert_a.shape[-1]):
# ab propagating
emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[0] ** 2), dim=1)
emb_v_b = emb_vert_b[:, :, j, :]
emb_v_ab = torch.cat([emb_v_a, emb_v_b], dim=-1)
w = self.reweight_ab(emb_v_ab)
agg_vb.append(torch.bmm(emb_v_b.transpose(1, 2), w).squeeze() * gate_vert_b[:, :, j])
# ac propagating
emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[1] ** 2), dim=1)
emb_v_c = emb_vert_c[:, :, j, :]
emb_v_ac = torch.cat([emb_v_a, emb_v_c], dim=-1)
w = self.reweight_ac(emb_v_ac)
agg_vc.append(torch.bmm(emb_v_c.transpose(1, 2), w).squeeze() * gate_vert_c[:, :, j])
agg_vert_b = torch.stack(agg_vb, dim=-1)
agg_vert_c = torch.stack(agg_vc, dim=-1)
agg_vert_bc = torch.cat([agg_vert_b, agg_vert_c], dim=1)
agg_vert_abc = torch.cat([agg_vert_bc, emb_vert_a], dim=1)
agg_vert_abc = torch.sigmoid(agg_vert_abc)
agg_vert_abc = agg_vert_abc.reshape(vert_a.shape[0], -1, vert_a.shape[2], vert_a.shape[3])
return self.reproject(agg_vert_abc)
class GuidedAttention(nn.Module):
""" Reconstruction Guided Attention. """
def __init__(self, depth=728, drop_rate=0.2):
super(GuidedAttention, self).__init__()
self.depth = depth
self.gated = nn.Sequential(
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(True),
nn.Conv2d(3, 1, 1, bias=False),
nn.Sigmoid()
)
self.h = nn.Sequential(
nn.Conv2d(depth, depth, 1, 1, bias=False),
nn.BatchNorm2d(depth),
nn.ReLU(True),
)
self.dropout = nn.Dropout(drop_rate)
def forward(self, x, pred_x, embedding):
residual_full = torch.abs(x - pred_x)
residual_x = F.interpolate(residual_full, size=embedding.shape[-2:],
mode='bilinear', align_corners=True)
res_map = self.gated(residual_x)
return res_map * self.h(embedding) + self.dropout(embedding)
|