File size: 7,411 Bytes
982865f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
import torch.nn as nn
import torch.nn.functional as F


def freeze_weights(module):
    for param in module.parameters():
        param.requires_grad = False


def l1_regularize(module):
    reg_loss = 0.
    for key, param in module.reg_params.items():
        if "weight" in key and param.requires_grad:
            reg_loss += torch.sum(torch.abs(param))
    return reg_loss


class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
        super(SeparableConv2d, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation,
                               groups=in_channels, bias=bias)
        self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)

    def forward(self, x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x


class Block(nn.Module):
    def __init__(self, in_channels, out_channels, reps, strides=1,
                 start_with_relu=True, grow_first=True, with_bn=True):
        super(Block, self).__init__()

        self.with_bn = with_bn

        if out_channels != in_channels or strides != 1:
            self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False)
            if with_bn:
                self.skipbn = nn.BatchNorm2d(out_channels)
        else:
            self.skip = None

        rep = []
        for i in range(reps):
            if grow_first:
                inc = in_channels if i == 0 else out_channels
                outc = out_channels
            else:
                inc = in_channels
                outc = in_channels if i < (reps - 1) else out_channels
            rep.append(nn.ReLU(inplace=True))
            rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1))
            if with_bn:
                rep.append(nn.BatchNorm2d(outc))

        if not start_with_relu:
            rep = rep[1:]
        else:
            rep[0] = nn.ReLU(inplace=False)

        if strides != 1:
            rep.append(nn.MaxPool2d(3, strides, 1))
        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            if self.with_bn:
                skip = self.skipbn(skip)
        else:
            skip = inp

        x += skip
        return x


class GraphReasoning(nn.Module):
    """ Graph Reasoning Module for information aggregation. """

    def __init__(self, va_in, va_out, vb_in, vb_out, vc_in, vc_out, spatial_ratio, drop_rate):
        super(GraphReasoning, self).__init__()
        self.ratio = spatial_ratio
        self.va_embedding = nn.Sequential(
            nn.Conv2d(va_in, va_out, 1, bias=False),
            nn.ReLU(True),
            nn.Conv2d(va_out, va_out, 1, bias=False),
        )
        self.va_gated_b = nn.Sequential(
            nn.Conv2d(va_in, va_out, 1, bias=False),
            nn.Sigmoid()
        )
        self.va_gated_c = nn.Sequential(
            nn.Conv2d(va_in, va_out, 1, bias=False),
            nn.Sigmoid()
        )
        self.vb_embedding = nn.Sequential(
            nn.Linear(vb_in, vb_out, bias=False),
            nn.ReLU(True),
            nn.Linear(vb_out, vb_out, bias=False),
        )
        self.vc_embedding = nn.Sequential(
            nn.Linear(vc_in, vc_out, bias=False),
            nn.ReLU(True),
            nn.Linear(vc_out, vc_out, bias=False),
        )
        self.unfold_b = nn.Unfold(kernel_size=spatial_ratio[0], stride=spatial_ratio[0])
        self.unfold_c = nn.Unfold(kernel_size=spatial_ratio[1], stride=spatial_ratio[1])
        self.reweight_ab = nn.Sequential(
            nn.Linear(va_out + vb_out, 1, bias=False),
            nn.ReLU(True),
            nn.Softmax(dim=1)
        )
        self.reweight_ac = nn.Sequential(
            nn.Linear(va_out + vc_out, 1, bias=False),
            nn.ReLU(True),
            nn.Softmax(dim=1)
        )
        self.reproject = nn.Sequential(
            nn.Conv2d(va_out + vb_out + vc_out, va_in, kernel_size=1, bias=False),
            nn.ReLU(True),
            nn.Conv2d(va_in, va_in, kernel_size=1, bias=False),
            nn.Dropout(drop_rate) if drop_rate is not None else nn.Identity(),
        )

    def forward(self, vert_a, vert_b, vert_c):
        emb_vert_a = self.va_embedding(vert_a)
        emb_vert_a = emb_vert_a.reshape([emb_vert_a.shape[0], emb_vert_a.shape[1], -1])

        gate_vert_b = 1 - self.va_gated_b(vert_a)
        gate_vert_b = gate_vert_b.reshape(*emb_vert_a.shape)
        gate_vert_c = 1 - self.va_gated_c(vert_a)
        gate_vert_c = gate_vert_c.reshape(*emb_vert_a.shape)

        vert_b = self.unfold_b(vert_b).reshape(
            [vert_b.shape[0], vert_b.shape[1], self.ratio[0] * self.ratio[0], -1])
        vert_b = vert_b.permute([0, 2, 3, 1])
        emb_vert_b = self.vb_embedding(vert_b)

        vert_c = self.unfold_c(vert_c).reshape(
            [vert_c.shape[0], vert_c.shape[1], self.ratio[1] * self.ratio[1], -1])
        vert_c = vert_c.permute([0, 2, 3, 1])
        emb_vert_c = self.vc_embedding(vert_c)

        agg_vb = list()
        agg_vc = list()
        for j in range(emb_vert_a.shape[-1]):
            # ab propagating
            emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[0] ** 2), dim=1)
            emb_v_b = emb_vert_b[:, :, j, :]
            emb_v_ab = torch.cat([emb_v_a, emb_v_b], dim=-1)
            w = self.reweight_ab(emb_v_ab)
            agg_vb.append(torch.bmm(emb_v_b.transpose(1, 2), w).squeeze() * gate_vert_b[:, :, j])

            # ac propagating
            emb_v_a = torch.stack([emb_vert_a[:, :, j]] * (self.ratio[1] ** 2), dim=1)
            emb_v_c = emb_vert_c[:, :, j, :]
            emb_v_ac = torch.cat([emb_v_a, emb_v_c], dim=-1)
            w = self.reweight_ac(emb_v_ac)
            agg_vc.append(torch.bmm(emb_v_c.transpose(1, 2), w).squeeze() * gate_vert_c[:, :, j])

        agg_vert_b = torch.stack(agg_vb, dim=-1)
        agg_vert_c = torch.stack(agg_vc, dim=-1)
        agg_vert_bc = torch.cat([agg_vert_b, agg_vert_c], dim=1)
        agg_vert_abc = torch.cat([agg_vert_bc, emb_vert_a], dim=1)
        agg_vert_abc = torch.sigmoid(agg_vert_abc)
        agg_vert_abc = agg_vert_abc.reshape(vert_a.shape[0], -1, vert_a.shape[2], vert_a.shape[3])
        return self.reproject(agg_vert_abc)


class GuidedAttention(nn.Module):
    """ Reconstruction Guided Attention. """

    def __init__(self, depth=728, drop_rate=0.2):
        super(GuidedAttention, self).__init__()
        self.depth = depth
        self.gated = nn.Sequential(
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=1, bias=False),
            nn.ReLU(True),
            nn.Conv2d(3, 1, 1, bias=False),
            nn.Sigmoid()
        )
        self.h = nn.Sequential(
            nn.Conv2d(depth, depth, 1, 1, bias=False),
            nn.BatchNorm2d(depth),
            nn.ReLU(True),
        )
        self.dropout = nn.Dropout(drop_rate)

    def forward(self, x, pred_x, embedding):
        residual_full = torch.abs(x - pred_x)
        residual_x = F.interpolate(residual_full, size=embedding.shape[-2:],
                                   mode='bilinear', align_corners=True)
        res_map = self.gated(residual_x)
        return res_map * self.h(embedding) + self.dropout(embedding)