File size: 4,773 Bytes
982865f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from functools import partial
from timm.models import xception
from model.common import SeparableConv2d, Block
from model.common import GuidedAttention, GraphReasoning

import torch
import torch.nn as nn
import torch.nn.functional as F

encoder_params = {
    "xception": {
        "features": 2048,
        "init_op": partial(xception, pretrained=True)
    }
}


class Recce(nn.Module):
    """ End-to-End Reconstruction-Classification Learning for Face Forgery Detection """

    def __init__(self, num_classes, drop_rate=0.2):
        super(Recce, self).__init__()
        self.name = "xception"
        self.loss_inputs = dict()
        self.encoder = encoder_params[self.name]["init_op"]()
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(drop_rate)
        self.fc = nn.Linear(encoder_params[self.name]["features"], num_classes)

        self.attention = GuidedAttention(depth=728, drop_rate=drop_rate)
        self.reasoning = GraphReasoning(728, 256, 256, 256, 128, 256, [2, 4], drop_rate)

        self.decoder1 = nn.Sequential(
            nn.UpsamplingNearest2d(scale_factor=2),
            SeparableConv2d(728, 256, 3, 1, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True)
        )
        self.decoder2 = Block(256, 256, 3, 1)
        self.decoder3 = nn.Sequential(
            nn.UpsamplingNearest2d(scale_factor=2),
            SeparableConv2d(256, 128, 3, 1, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True)
        )
        self.decoder4 = Block(128, 128, 3, 1)
        self.decoder5 = nn.Sequential(
            nn.UpsamplingNearest2d(scale_factor=2),
            SeparableConv2d(128, 64, 3, 1, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )
        self.decoder6 = nn.Sequential(
            nn.Conv2d(64, 3, 1, 1, bias=False),
            nn.Tanh()
        )

    def norm_n_corr(self, x):
        norm_embed = F.normalize(self.global_pool(x), p=2, dim=1)
        corr = (torch.matmul(norm_embed.squeeze(), norm_embed.squeeze().T) + 1.) / 2.
        return norm_embed, corr

    @staticmethod
    def add_white_noise(tensor, mean=0., std=1e-6):
        rand = torch.rand([tensor.shape[0], 1, 1, 1])
        rand = torch.where(rand > 0.5, 1., 0.).to(tensor.device)
        white_noise = torch.normal(mean, std, size=tensor.shape, device=tensor.device)
        noise_t = tensor + white_noise * rand
        noise_t = torch.clip(noise_t, -1., 1.)
        return noise_t

    def forward(self, x):
        # clear the loss inputs
        self.loss_inputs = dict(recons=[], contra=[])
        noise_x = self.add_white_noise(x) if self.training else x
        out = self.encoder.conv1(noise_x)
        out = self.encoder.bn1(out)
        out = self.encoder.act1(out)
        out = self.encoder.conv2(out)
        out = self.encoder.bn2(out)
        out = self.encoder.act2(out)
        out = self.encoder.block1(out)
        out = self.encoder.block2(out)
        out = self.encoder.block3(out)
        embedding = self.encoder.block4(out)

        norm_embed, corr = self.norm_n_corr(embedding)
        self.loss_inputs['contra'].append(corr)

        out = self.dropout(embedding)
        out = self.decoder1(out)
        out_d2 = self.decoder2(out)

        norm_embed, corr = self.norm_n_corr(out_d2)
        self.loss_inputs['contra'].append(corr)

        out = self.decoder3(out_d2)
        out_d4 = self.decoder4(out)

        norm_embed, corr = self.norm_n_corr(out_d4)
        self.loss_inputs['contra'].append(corr)

        out = self.decoder5(out_d4)
        pred = self.decoder6(out)

        recons_x = F.interpolate(pred, size=x.shape[-2:], mode='bilinear', align_corners=True)
        self.loss_inputs['recons'].append(recons_x)

        embedding = self.encoder.block5(embedding)
        embedding = self.encoder.block6(embedding)
        embedding = self.encoder.block7(embedding)

        fusion = self.reasoning(embedding, out_d2, out_d4) + embedding

        embedding = self.encoder.block8(fusion)
        img_att = self.attention(x, recons_x, embedding)

        embedding = self.encoder.block9(img_att)
        embedding = self.encoder.block10(embedding)
        embedding = self.encoder.block11(embedding)
        embedding = self.encoder.block12(embedding)

        embedding = self.encoder.conv3(embedding)
        embedding = self.encoder.bn3(embedding)
        embedding = self.encoder.act3(embedding)
        embedding = self.encoder.conv4(embedding)
        embedding = self.encoder.bn4(embedding)
        embedding = self.encoder.act4(embedding)

        embedding = self.global_pool(embedding).squeeze()

        out = self.dropout(embedding)
        return self.fc(out)