File size: 3,316 Bytes
982865f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import torch
import random
from collections import OrderedDict
from torchvision.utils import make_grid

LEGAL_METRIC = ['Acc', 'AUC', 'LogLoss']


class AbstractTrainer(object):
    def __init__(self, config, stage="Train"):
        feasible_stage = ["Train", "Test"]
        if stage not in feasible_stage:
            raise ValueError(f"stage should be in {feasible_stage}, but found '{stage}'")

        self.config = config
        model_cfg = config.get("model", None)
        data_cfg = config.get("data", None)
        config_cfg = config.get("config", None)

        self.model_name = model_cfg.pop("name")

        self.gpu = None
        self.dir = None
        self.debug = None
        self.device = None
        self.resume = None
        self.local_rank = None
        self.num_classes = None

        self.best_metric = 0.0
        self.best_step = 1
        self.start_step = 1

        self._initiated_settings(model_cfg, data_cfg, config_cfg)

        if stage == 'Train':
            self._train_settings(model_cfg, data_cfg, config_cfg)
        if stage == 'Test':
            self._test_settings(model_cfg, data_cfg, config_cfg)

    def _initiated_settings(self, model_cfg, data_cfg, config_cfg):
        raise NotImplementedError("Not implemented in abstract class.")

    def _train_settings(self, model_cfg, data_cfg, config_cfg):
        raise NotImplementedError("Not implemented in abstract class.")

    def _test_settings(self, model_cfg, data_cfg, config_cfg):
        raise NotImplementedError("Not implemented in abstract class.")

    def _save_ckpt(self, step, best=False):
        raise NotImplementedError("Not implemented in abstract class.")

    def _load_ckpt(self, best=False, train=False):
        raise NotImplementedError("Not implemented in abstract class.")

    def to_device(self, items):
        return [obj.to(self.device) for obj in items]

    @staticmethod
    def fixed_randomness():
        random.seed(0)
        torch.manual_seed(0)
        torch.cuda.manual_seed(0)
        torch.cuda.manual_seed_all(0)

    def train(self):
        raise NotImplementedError("Not implemented in abstract class.")

    def validate(self, epoch, step, timer, writer):
        raise NotImplementedError("Not implemented in abstract class.")

    def test(self):
        raise NotImplementedError("Not implemented in abstract class.")

    def plot_figure(self, images, pred, gt, nrow, categories=None, show=True):
        import matplotlib.pyplot as plt
        plot = make_grid(
            images, nrow, padding=4, normalize=True, scale_each=True, pad_value=1)
        if self.num_classes == 1:
            pred = (pred >= 0.5).cpu().numpy()
        else:
            pred = pred.argmax(1).cpu().numpy()
        gt = gt.cpu().numpy()
        if categories is not None:
            pred = [categories[i] for i in pred]
            gt = [categories[i] for i in gt]
        plot = plot.permute([1, 2, 0])
        plot = plot.cpu().numpy()
        ret = plt.figure()
        plt.imshow(plot)
        plt.title("pred: %s\ngt: %s" % (pred, gt))
        plt.axis("off")
        if show:
            plt.savefig(os.path.join(self.dir, "test_image.png"), dpi=300)
            plt.show()
            plt.close()
        else:
            plt.close()
            return ret