File size: 16,989 Bytes
982865f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import sys
import time
import math
import yaml
import torch
import random
import numpy as np

from tqdm import tqdm
from pprint import pprint
from torch.utils import data
import torch.distributed as dist
from torch.cuda.amp import autocast, GradScaler
from tensorboardX import SummaryWriter

from dataset import load_dataset
from loss import get_loss
from model import load_model
from optimizer import get_optimizer
from scheduler import get_scheduler
from trainer import AbstractTrainer, LEGAL_METRIC
from trainer.utils import exp_recons_loss, MLLoss, reduce_tensor, center_print
from trainer.utils import MODELS_PATH, AccMeter, AUCMeter, AverageMeter, Logger, Timer


class ExpMultiGpuTrainer(AbstractTrainer):
    def __init__(self, config, stage="Train"):
        super(ExpMultiGpuTrainer, self).__init__(config, stage)
        np.random.seed(2021)

    def _mprint(self, content=""):
        if self.local_rank == 0:
            print(content)

    def _initiated_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
        self.local_rank = config_cfg["local_rank"]

    def _train_settings(self, model_cfg, data_cfg, config_cfg):
        # debug mode: no log dir, no train_val operation.
        self.debug = config_cfg["debug"]
        self._mprint(f"Using debug mode: {self.debug}.")
        self._mprint("*" * 20)

        self.eval_metric = config_cfg["metric"]
        if self.eval_metric not in LEGAL_METRIC:
            raise ValueError(f"Evaluation metric must be in {LEGAL_METRIC}, but found "
                             f"{self.eval_metric}.")
        if self.eval_metric == LEGAL_METRIC[-1]:
            self.best_metric = 1.0e8

        # distribution
        dist.init_process_group(config_cfg["distribute"]["backend"])

        # load training dataset
        train_dataset = data_cfg["file"]
        branch = data_cfg["train_branch"]
        name = data_cfg["name"]
        with open(train_dataset, "r") as f:
            options = yaml.load(f, Loader=yaml.FullLoader)
        train_options = options[branch]
        self.train_set = load_dataset(name)(train_options)
        # define training sampler
        self.train_sampler = data.distributed.DistributedSampler(self.train_set)
        # wrapped with data loader
        self.train_loader = data.DataLoader(self.train_set, shuffle=False,
                                            sampler=self.train_sampler,
                                            num_workers=data_cfg.get("num_workers", 4),
                                            batch_size=data_cfg["train_batch_size"])

        if self.local_rank == 0:
            # load validation dataset
            val_options = options[data_cfg["val_branch"]]
            self.val_set = load_dataset(name)(val_options)
            # wrapped with data loader
            self.val_loader = data.DataLoader(self.val_set, shuffle=True,
                                              num_workers=data_cfg.get("num_workers", 4),
                                              batch_size=data_cfg["val_batch_size"])

        self.resume = config_cfg.get("resume", False)

        if not self.debug:
            time_format = "%Y-%m-%d...%H.%M.%S"
            run_id = time.strftime(time_format, time.localtime(time.time()))
            self.run_id = config_cfg.get("id", run_id)
            self.dir = os.path.join("runs", self.model_name, self.run_id)

            if self.local_rank == 0:
                if not self.resume:
                    if os.path.exists(self.dir):
                        raise ValueError("Error: given id '%s' already exists." % self.run_id)
                    os.makedirs(self.dir, exist_ok=True)
                    print(f"Writing config file to file directory: {self.dir}.")
                    yaml.dump({"config": self.config,
                               "train_data": train_options,
                               "val_data": val_options},
                              open(os.path.join(self.dir, 'train_config.yml'), 'w'))
                    # copy the script for the training model
                    model_file = MODELS_PATH[self.model_name]
                    os.system("cp " + model_file + " " + self.dir)
                else:
                    print(f"Resuming the history in file directory: {self.dir}.")

                print(f"Logging directory: {self.dir}.")

                # redirect the std out stream
                sys.stdout = Logger(os.path.join(self.dir, 'records.txt'))
                center_print('Train configurations begins.')
                pprint(self.config)
                pprint(train_options)
                pprint(val_options)
                center_print('Train configurations ends.')

        # load model
        self.num_classes = model_cfg["num_classes"]
        self.device = "cuda:" + str(self.local_rank)
        self.model = load_model(self.model_name)(**model_cfg)
        self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model).to(self.device)
        self._mprint(f"Using SyncBatchNorm.")
        self.model = torch.nn.parallel.DistributedDataParallel(
            self.model, device_ids=[self.local_rank], find_unused_parameters=True)

        # load optimizer
        optim_cfg = config_cfg.get("optimizer", None)
        optim_name = optim_cfg.pop("name")
        self.optimizer = get_optimizer(optim_name)(self.model.parameters(), **optim_cfg)
        # load scheduler
        self.scheduler = get_scheduler(self.optimizer, config_cfg.get("scheduler", None))
        # load loss
        self.loss_criterion = get_loss(config_cfg.get("loss", None), device=self.device)

        # total number of steps (or epoch) to train
        self.num_steps = train_options["num_steps"]
        self.num_epoch = math.ceil(self.num_steps / len(self.train_loader))

        # the number of steps to write down a log
        self.log_steps = train_options["log_steps"]
        # the number of steps to validate on val dataset once
        self.val_steps = train_options["val_steps"]

        # balance coefficients
        self.lambda_1 = config_cfg["lambda_1"]
        self.lambda_2 = config_cfg["lambda_2"]
        self.warmup_step = config_cfg.get('warmup_step', 0)

        self.contra_loss = MLLoss()
        self.acc_meter = AccMeter()
        self.loss_meter = AverageMeter()
        self.recons_loss_meter = AverageMeter()
        self.contra_loss_meter = AverageMeter()

        if self.resume and self.local_rank == 0:
            self._load_ckpt(best=config_cfg.get("resume_best", False), train=True)

    def _test_settings(self, model_cfg, data_cfg, config_cfg):
        # Not used.
        raise NotImplementedError("The function is not intended to be used here.")

    def _load_ckpt(self, best=False, train=False):
        # Not used.
        raise NotImplementedError("The function is not intended to be used here.")

    def _save_ckpt(self, step, best=False):
        save_dir = os.path.join(self.dir, f"best_model_{step}.bin" if best else "latest_model.bin")
        torch.save({
            "step": step,
            "best_step": self.best_step,
            "best_metric": self.best_metric,
            "eval_metric": self.eval_metric,
            "model": self.model.module.state_dict(),
            "optimizer": self.optimizer.state_dict(),
            "scheduler": self.scheduler.state_dict(),
        }, save_dir)

    def train(self):
        try:
            timer = Timer()
            grad_scalar = GradScaler(2 ** 10)
            if self.local_rank == 0:
                writer = None if self.debug else SummaryWriter(log_dir=self.dir)
                center_print("Training begins......")
            else:
                writer = None
            start_epoch = self.start_step // len(self.train_loader) + 1
            for epoch_idx in range(start_epoch, self.num_epoch + 1):
                # set sampler
                self.train_sampler.set_epoch(epoch_idx)

                # reset meter
                self.acc_meter.reset()
                self.loss_meter.reset()
                self.recons_loss_meter.reset()
                self.contra_loss_meter.reset()
                self.optimizer.step()

                train_generator = enumerate(self.train_loader, 1)
                # wrap train generator with tqdm for process 0
                if self.local_rank == 0:
                    train_generator = tqdm(train_generator, position=0, leave=True)

                for batch_idx, train_data in train_generator:
                    global_step = (epoch_idx - 1) * len(self.train_loader) + batch_idx
                    self.model.train()
                    I, Y = train_data
                    I = self.train_loader.dataset.load_item(I)
                    in_I, Y = self.to_device((I, Y))

                    # warm-up lr
                    if self.warmup_step != 0 and global_step <= self.warmup_step:
                        lr = self.config['config']['optimizer']['lr'] * float(global_step) / self.warmup_step
                        for param_group in self.optimizer.param_groups:
                            param_group['lr'] = lr

                    self.optimizer.zero_grad()
                    with autocast():
                        Y_pre = self.model(in_I)

                        # for BCE Setting:
                        if self.num_classes == 1:
                            Y_pre = Y_pre.squeeze()
                            loss = self.loss_criterion(Y_pre, Y.float())
                            Y_pre = torch.sigmoid(Y_pre)
                        else:
                            loss = self.loss_criterion(Y_pre, Y)

                        # flood
                        loss = (loss - 0.04).abs() + 0.04
                        recons_loss = exp_recons_loss(self.model.module.loss_inputs['recons'], (in_I, Y))
                        contra_loss = self.contra_loss(self.model.module.loss_inputs['contra'], Y)
                        loss += self.lambda_1 * recons_loss + self.lambda_2 * contra_loss

                    grad_scalar.scale(loss).backward()
                    grad_scalar.step(self.optimizer)
                    grad_scalar.update()
                    if self.warmup_step == 0 or global_step > self.warmup_step:
                        self.scheduler.step()

                    self.acc_meter.update(Y_pre, Y, self.num_classes == 1)
                    self.loss_meter.update(reduce_tensor(loss).item())
                    self.recons_loss_meter.update(reduce_tensor(recons_loss).item())
                    self.contra_loss_meter.update(reduce_tensor(contra_loss).item())
                    iter_acc = reduce_tensor(self.acc_meter.mean_acc()).item()

                    if self.local_rank == 0:
                        if global_step % self.log_steps == 0 and writer is not None:
                            writer.add_scalar("train/Acc", iter_acc, global_step)
                            writer.add_scalar("train/Loss", self.loss_meter.avg, global_step)
                            writer.add_scalar("train/Recons_Loss",
                                              self.recons_loss_meter.avg if self.lambda_1 != 0 else 0.,
                                              global_step)
                            writer.add_scalar("train/Contra_Loss", self.contra_loss_meter.avg, global_step)
                            writer.add_scalar("train/LR", self.scheduler.get_last_lr()[0], global_step)

                        # log training step
                        train_generator.set_description(
                            "Train Epoch %d (%d/%d), Global Step %d, Loss %.4f, Recons %.4f, con %.4f, "
                            "ACC %.4f, LR %.6f" % (
                                epoch_idx, batch_idx, len(self.train_loader), global_step,
                                self.loss_meter.avg, self.recons_loss_meter.avg, self.contra_loss_meter.avg,
                                iter_acc, self.scheduler.get_last_lr()[0])
                        )

                        # validating process
                        if global_step % self.val_steps == 0 and not self.debug:
                            print()
                            self.validate(epoch_idx, global_step, timer, writer)

                    # when num_steps has been set and the training process will
                    # be stopped earlier than the specified num_epochs, then stop.
                    if self.num_steps is not None and global_step == self.num_steps:
                        if writer is not None:
                            writer.close()
                        if self.local_rank == 0:
                            print()
                            center_print("Training process ends.")
                        dist.destroy_process_group()
                        return
                # close the tqdm bar when one epoch ends
                if self.local_rank == 0:
                    train_generator.close()
                    print()
            # training ends with integer epochs
            if self.local_rank == 0:
                if writer is not None:
                    writer.close()
                center_print("Training process ends.")
            dist.destroy_process_group()
        except Exception as e:
            dist.destroy_process_group()
            raise e

    def validate(self, epoch, step, timer, writer):
        v_idx = random.randint(1, len(self.val_loader) + 1)
        categories = self.val_loader.dataset.categories
        self.model.eval()
        with torch.no_grad():
            acc = AccMeter()
            auc = AUCMeter()
            loss_meter = AverageMeter()
            cur_acc = 0.0  # Higher is better
            cur_auc = 0.0  # Higher is better
            cur_loss = 1e8  # Lower is better
            val_generator = tqdm(enumerate(self.val_loader, 1), position=0, leave=True)
            for val_idx, val_data in val_generator:
                I, Y = val_data
                I = self.val_loader.dataset.load_item(I)
                in_I, Y = self.to_device((I, Y))
                Y_pre = self.model(in_I)

                # for BCE Setting:
                if self.num_classes == 1:
                    Y_pre = Y_pre.squeeze()
                    loss = self.loss_criterion(Y_pre, Y.float())
                    Y_pre = torch.sigmoid(Y_pre)
                else:
                    loss = self.loss_criterion(Y_pre, Y)

                acc.update(Y_pre, Y, self.num_classes == 1)
                auc.update(Y_pre, Y, self.num_classes == 1)
                loss_meter.update(loss.item())

                cur_acc = acc.mean_acc()
                cur_loss = loss_meter.avg

                val_generator.set_description(
                    "Eval Epoch %d (%d/%d), Global Step %d, Loss %.4f, ACC %.4f" % (
                        epoch, val_idx, len(self.val_loader), step,
                        cur_loss, cur_acc)
                )

                if val_idx == v_idx or val_idx == 1:
                    sample_recons = list()
                    for _ in self.model.module.loss_inputs['recons']:
                        sample_recons.append(_[:4].to("cpu"))
                    # show images
                    images = I[:4]
                    images = torch.cat([images, *sample_recons], dim=0)
                    pred = Y_pre[:4]
                    gt = Y[:4]
                    figure = self.plot_figure(images, pred, gt, 4, categories, show=False)

            cur_auc = auc.mean_auc()
            print("Eval Epoch %d, Loss %.4f, ACC %.4f, AUC %.4f" % (epoch, cur_loss, cur_acc, cur_auc))
            if writer is not None:
                writer.add_scalar("val/Loss", cur_loss, step)
                writer.add_scalar("val/Acc", cur_acc, step)
                writer.add_scalar("val/AUC", cur_auc, step)
                writer.add_figure("val/Figures", figure, step)
            # record the best acc and the corresponding step
            if self.eval_metric == 'Acc' and cur_acc >= self.best_metric:
                self.best_metric = cur_acc
                self.best_step = step
                self._save_ckpt(step, best=True)
            elif self.eval_metric == 'AUC' and cur_auc >= self.best_metric:
                self.best_metric = cur_auc
                self.best_step = step
                self._save_ckpt(step, best=True)
            elif self.eval_metric == 'LogLoss' and cur_loss <= self.best_metric:
                self.best_metric = cur_loss
                self.best_step = step
                self._save_ckpt(step, best=True)
            print("Best Step %d, Best %s %.4f, Running Time: %s, Estimated Time: %s" % (
                self.best_step, self.eval_metric, self.best_metric,
                timer.measure(), timer.measure(step / self.num_steps)
            ))
            self._save_ckpt(step, best=False)

    def test(self):
        # Not used.
        raise NotImplementedError("The function is not intended to be used here.")