Spaces:
Sleeping
Sleeping
File size: 16,989 Bytes
982865f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import sys
import time
import math
import yaml
import torch
import random
import numpy as np
from tqdm import tqdm
from pprint import pprint
from torch.utils import data
import torch.distributed as dist
from torch.cuda.amp import autocast, GradScaler
from tensorboardX import SummaryWriter
from dataset import load_dataset
from loss import get_loss
from model import load_model
from optimizer import get_optimizer
from scheduler import get_scheduler
from trainer import AbstractTrainer, LEGAL_METRIC
from trainer.utils import exp_recons_loss, MLLoss, reduce_tensor, center_print
from trainer.utils import MODELS_PATH, AccMeter, AUCMeter, AverageMeter, Logger, Timer
class ExpMultiGpuTrainer(AbstractTrainer):
def __init__(self, config, stage="Train"):
super(ExpMultiGpuTrainer, self).__init__(config, stage)
np.random.seed(2021)
def _mprint(self, content=""):
if self.local_rank == 0:
print(content)
def _initiated_settings(self, model_cfg=None, data_cfg=None, config_cfg=None):
self.local_rank = config_cfg["local_rank"]
def _train_settings(self, model_cfg, data_cfg, config_cfg):
# debug mode: no log dir, no train_val operation.
self.debug = config_cfg["debug"]
self._mprint(f"Using debug mode: {self.debug}.")
self._mprint("*" * 20)
self.eval_metric = config_cfg["metric"]
if self.eval_metric not in LEGAL_METRIC:
raise ValueError(f"Evaluation metric must be in {LEGAL_METRIC}, but found "
f"{self.eval_metric}.")
if self.eval_metric == LEGAL_METRIC[-1]:
self.best_metric = 1.0e8
# distribution
dist.init_process_group(config_cfg["distribute"]["backend"])
# load training dataset
train_dataset = data_cfg["file"]
branch = data_cfg["train_branch"]
name = data_cfg["name"]
with open(train_dataset, "r") as f:
options = yaml.load(f, Loader=yaml.FullLoader)
train_options = options[branch]
self.train_set = load_dataset(name)(train_options)
# define training sampler
self.train_sampler = data.distributed.DistributedSampler(self.train_set)
# wrapped with data loader
self.train_loader = data.DataLoader(self.train_set, shuffle=False,
sampler=self.train_sampler,
num_workers=data_cfg.get("num_workers", 4),
batch_size=data_cfg["train_batch_size"])
if self.local_rank == 0:
# load validation dataset
val_options = options[data_cfg["val_branch"]]
self.val_set = load_dataset(name)(val_options)
# wrapped with data loader
self.val_loader = data.DataLoader(self.val_set, shuffle=True,
num_workers=data_cfg.get("num_workers", 4),
batch_size=data_cfg["val_batch_size"])
self.resume = config_cfg.get("resume", False)
if not self.debug:
time_format = "%Y-%m-%d...%H.%M.%S"
run_id = time.strftime(time_format, time.localtime(time.time()))
self.run_id = config_cfg.get("id", run_id)
self.dir = os.path.join("runs", self.model_name, self.run_id)
if self.local_rank == 0:
if not self.resume:
if os.path.exists(self.dir):
raise ValueError("Error: given id '%s' already exists." % self.run_id)
os.makedirs(self.dir, exist_ok=True)
print(f"Writing config file to file directory: {self.dir}.")
yaml.dump({"config": self.config,
"train_data": train_options,
"val_data": val_options},
open(os.path.join(self.dir, 'train_config.yml'), 'w'))
# copy the script for the training model
model_file = MODELS_PATH[self.model_name]
os.system("cp " + model_file + " " + self.dir)
else:
print(f"Resuming the history in file directory: {self.dir}.")
print(f"Logging directory: {self.dir}.")
# redirect the std out stream
sys.stdout = Logger(os.path.join(self.dir, 'records.txt'))
center_print('Train configurations begins.')
pprint(self.config)
pprint(train_options)
pprint(val_options)
center_print('Train configurations ends.')
# load model
self.num_classes = model_cfg["num_classes"]
self.device = "cuda:" + str(self.local_rank)
self.model = load_model(self.model_name)(**model_cfg)
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model).to(self.device)
self._mprint(f"Using SyncBatchNorm.")
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, device_ids=[self.local_rank], find_unused_parameters=True)
# load optimizer
optim_cfg = config_cfg.get("optimizer", None)
optim_name = optim_cfg.pop("name")
self.optimizer = get_optimizer(optim_name)(self.model.parameters(), **optim_cfg)
# load scheduler
self.scheduler = get_scheduler(self.optimizer, config_cfg.get("scheduler", None))
# load loss
self.loss_criterion = get_loss(config_cfg.get("loss", None), device=self.device)
# total number of steps (or epoch) to train
self.num_steps = train_options["num_steps"]
self.num_epoch = math.ceil(self.num_steps / len(self.train_loader))
# the number of steps to write down a log
self.log_steps = train_options["log_steps"]
# the number of steps to validate on val dataset once
self.val_steps = train_options["val_steps"]
# balance coefficients
self.lambda_1 = config_cfg["lambda_1"]
self.lambda_2 = config_cfg["lambda_2"]
self.warmup_step = config_cfg.get('warmup_step', 0)
self.contra_loss = MLLoss()
self.acc_meter = AccMeter()
self.loss_meter = AverageMeter()
self.recons_loss_meter = AverageMeter()
self.contra_loss_meter = AverageMeter()
if self.resume and self.local_rank == 0:
self._load_ckpt(best=config_cfg.get("resume_best", False), train=True)
def _test_settings(self, model_cfg, data_cfg, config_cfg):
# Not used.
raise NotImplementedError("The function is not intended to be used here.")
def _load_ckpt(self, best=False, train=False):
# Not used.
raise NotImplementedError("The function is not intended to be used here.")
def _save_ckpt(self, step, best=False):
save_dir = os.path.join(self.dir, f"best_model_{step}.bin" if best else "latest_model.bin")
torch.save({
"step": step,
"best_step": self.best_step,
"best_metric": self.best_metric,
"eval_metric": self.eval_metric,
"model": self.model.module.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
}, save_dir)
def train(self):
try:
timer = Timer()
grad_scalar = GradScaler(2 ** 10)
if self.local_rank == 0:
writer = None if self.debug else SummaryWriter(log_dir=self.dir)
center_print("Training begins......")
else:
writer = None
start_epoch = self.start_step // len(self.train_loader) + 1
for epoch_idx in range(start_epoch, self.num_epoch + 1):
# set sampler
self.train_sampler.set_epoch(epoch_idx)
# reset meter
self.acc_meter.reset()
self.loss_meter.reset()
self.recons_loss_meter.reset()
self.contra_loss_meter.reset()
self.optimizer.step()
train_generator = enumerate(self.train_loader, 1)
# wrap train generator with tqdm for process 0
if self.local_rank == 0:
train_generator = tqdm(train_generator, position=0, leave=True)
for batch_idx, train_data in train_generator:
global_step = (epoch_idx - 1) * len(self.train_loader) + batch_idx
self.model.train()
I, Y = train_data
I = self.train_loader.dataset.load_item(I)
in_I, Y = self.to_device((I, Y))
# warm-up lr
if self.warmup_step != 0 and global_step <= self.warmup_step:
lr = self.config['config']['optimizer']['lr'] * float(global_step) / self.warmup_step
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
self.optimizer.zero_grad()
with autocast():
Y_pre = self.model(in_I)
# for BCE Setting:
if self.num_classes == 1:
Y_pre = Y_pre.squeeze()
loss = self.loss_criterion(Y_pre, Y.float())
Y_pre = torch.sigmoid(Y_pre)
else:
loss = self.loss_criterion(Y_pre, Y)
# flood
loss = (loss - 0.04).abs() + 0.04
recons_loss = exp_recons_loss(self.model.module.loss_inputs['recons'], (in_I, Y))
contra_loss = self.contra_loss(self.model.module.loss_inputs['contra'], Y)
loss += self.lambda_1 * recons_loss + self.lambda_2 * contra_loss
grad_scalar.scale(loss).backward()
grad_scalar.step(self.optimizer)
grad_scalar.update()
if self.warmup_step == 0 or global_step > self.warmup_step:
self.scheduler.step()
self.acc_meter.update(Y_pre, Y, self.num_classes == 1)
self.loss_meter.update(reduce_tensor(loss).item())
self.recons_loss_meter.update(reduce_tensor(recons_loss).item())
self.contra_loss_meter.update(reduce_tensor(contra_loss).item())
iter_acc = reduce_tensor(self.acc_meter.mean_acc()).item()
if self.local_rank == 0:
if global_step % self.log_steps == 0 and writer is not None:
writer.add_scalar("train/Acc", iter_acc, global_step)
writer.add_scalar("train/Loss", self.loss_meter.avg, global_step)
writer.add_scalar("train/Recons_Loss",
self.recons_loss_meter.avg if self.lambda_1 != 0 else 0.,
global_step)
writer.add_scalar("train/Contra_Loss", self.contra_loss_meter.avg, global_step)
writer.add_scalar("train/LR", self.scheduler.get_last_lr()[0], global_step)
# log training step
train_generator.set_description(
"Train Epoch %d (%d/%d), Global Step %d, Loss %.4f, Recons %.4f, con %.4f, "
"ACC %.4f, LR %.6f" % (
epoch_idx, batch_idx, len(self.train_loader), global_step,
self.loss_meter.avg, self.recons_loss_meter.avg, self.contra_loss_meter.avg,
iter_acc, self.scheduler.get_last_lr()[0])
)
# validating process
if global_step % self.val_steps == 0 and not self.debug:
print()
self.validate(epoch_idx, global_step, timer, writer)
# when num_steps has been set and the training process will
# be stopped earlier than the specified num_epochs, then stop.
if self.num_steps is not None and global_step == self.num_steps:
if writer is not None:
writer.close()
if self.local_rank == 0:
print()
center_print("Training process ends.")
dist.destroy_process_group()
return
# close the tqdm bar when one epoch ends
if self.local_rank == 0:
train_generator.close()
print()
# training ends with integer epochs
if self.local_rank == 0:
if writer is not None:
writer.close()
center_print("Training process ends.")
dist.destroy_process_group()
except Exception as e:
dist.destroy_process_group()
raise e
def validate(self, epoch, step, timer, writer):
v_idx = random.randint(1, len(self.val_loader) + 1)
categories = self.val_loader.dataset.categories
self.model.eval()
with torch.no_grad():
acc = AccMeter()
auc = AUCMeter()
loss_meter = AverageMeter()
cur_acc = 0.0 # Higher is better
cur_auc = 0.0 # Higher is better
cur_loss = 1e8 # Lower is better
val_generator = tqdm(enumerate(self.val_loader, 1), position=0, leave=True)
for val_idx, val_data in val_generator:
I, Y = val_data
I = self.val_loader.dataset.load_item(I)
in_I, Y = self.to_device((I, Y))
Y_pre = self.model(in_I)
# for BCE Setting:
if self.num_classes == 1:
Y_pre = Y_pre.squeeze()
loss = self.loss_criterion(Y_pre, Y.float())
Y_pre = torch.sigmoid(Y_pre)
else:
loss = self.loss_criterion(Y_pre, Y)
acc.update(Y_pre, Y, self.num_classes == 1)
auc.update(Y_pre, Y, self.num_classes == 1)
loss_meter.update(loss.item())
cur_acc = acc.mean_acc()
cur_loss = loss_meter.avg
val_generator.set_description(
"Eval Epoch %d (%d/%d), Global Step %d, Loss %.4f, ACC %.4f" % (
epoch, val_idx, len(self.val_loader), step,
cur_loss, cur_acc)
)
if val_idx == v_idx or val_idx == 1:
sample_recons = list()
for _ in self.model.module.loss_inputs['recons']:
sample_recons.append(_[:4].to("cpu"))
# show images
images = I[:4]
images = torch.cat([images, *sample_recons], dim=0)
pred = Y_pre[:4]
gt = Y[:4]
figure = self.plot_figure(images, pred, gt, 4, categories, show=False)
cur_auc = auc.mean_auc()
print("Eval Epoch %d, Loss %.4f, ACC %.4f, AUC %.4f" % (epoch, cur_loss, cur_acc, cur_auc))
if writer is not None:
writer.add_scalar("val/Loss", cur_loss, step)
writer.add_scalar("val/Acc", cur_acc, step)
writer.add_scalar("val/AUC", cur_auc, step)
writer.add_figure("val/Figures", figure, step)
# record the best acc and the corresponding step
if self.eval_metric == 'Acc' and cur_acc >= self.best_metric:
self.best_metric = cur_acc
self.best_step = step
self._save_ckpt(step, best=True)
elif self.eval_metric == 'AUC' and cur_auc >= self.best_metric:
self.best_metric = cur_auc
self.best_step = step
self._save_ckpt(step, best=True)
elif self.eval_metric == 'LogLoss' and cur_loss <= self.best_metric:
self.best_metric = cur_loss
self.best_step = step
self._save_ckpt(step, best=True)
print("Best Step %d, Best %s %.4f, Running Time: %s, Estimated Time: %s" % (
self.best_step, self.eval_metric, self.best_metric,
timer.measure(), timer.measure(step / self.num_steps)
))
self._save_ckpt(step, best=False)
def test(self):
# Not used.
raise NotImplementedError("The function is not intended to be used here.")
|