Spaces:
Sleeping
Sleeping
import base64 | |
import json | |
import os, shutil | |
import re | |
import time | |
import uuid | |
import cv2 | |
import numpy as np | |
import streamlit as st | |
from PIL import Image | |
# from extract_video import extract_method_single_video | |
import shlex | |
import subprocess | |
from file_picker import st_file_selector | |
import os | |
DEBUG = False | |
def main(): | |
st.markdown("###") | |
uploaded_file = st.file_uploader('Upload a picture', type=['mp4', 'jpg', 'jpeg', 'png'], accept_multiple_files=False) | |
st.markdown("### or") | |
selected_file = st_file_selector(st, path='.\sample_files', key = 'selected', label = 'Choose a sample image/video') | |
if uploaded_file: | |
random_id = uuid.uuid1() | |
base_folder = "temps" | |
filename = "{}.{}".format(random_id, uploaded_file.type.split("/")[-1]) | |
file_type = uploaded_file.type.split("/")[0] | |
filepath = f"{base_folder}/{filename}" | |
if uploaded_file.type == 'video/mp4': | |
with open(f"temps/{filename}", mode='wb') as f: | |
f.write(uploaded_file.read()) | |
st.video(uploaded_file) | |
else: | |
img = Image.open(uploaded_file).convert('RGB') | |
ext = uploaded_file.type.split("/")[-1] | |
with open(f"temps/{filename}", mode='wb') as f: | |
f.write(uploaded_file.getbuffer()) | |
st.image(img) | |
elif selected_file: | |
base_folder = "sample_files" | |
file_type = selected_file.split(".")[-1] | |
filename = selected_file.split("/")[-1] | |
filepath = f"{base_folder}/{selected_file}" | |
if file_type == 'mp4': | |
video_file = open(filepath, 'rb') | |
video_bytes = video_file.read() | |
st.video(video_bytes) | |
else: | |
image_file = open(filepath, 'rb') | |
image_bytes = image_file.read() | |
st.image(image_bytes) | |
else: | |
return | |
with st.spinner(f'Processing {file_type}...'): | |
processing_stdout = subprocess.run(shlex.split(f"""python extract_video.py --device cpu --max_frames 50 --bs 2 --frame_interval 60 --confidence_threshold 0.997 --data_path "{filepath}" """), capture_output=True) | |
st.text(f'1. Processing {file_type} ✅') | |
with st.spinner(f'Analyzing {file_type}...'): | |
analyze_stdout = subprocess.run(shlex.split(f"""python inference.py --weight weights/model_params_ffpp_c23.pickle --device cpu --image_folder "{base_folder}/images/{filename}" """), capture_output=True) | |
st.text(f'2. Analyzing {file_type} ✅') | |
if len(os.listdir("{}/images/{}".format(base_folder, filename.split(".")[0]))) < 1: | |
st.text("No faces could be detected! 🚨") | |
return | |
try: | |
fake_probability = float(analyze_stdout.stdout.decode('utf-8').split('Mean prediction: ')[-1]) | |
if fake_probability > 0.6: | |
st.error(' FAKE! ', icon="🚨") | |
else: | |
st.success(" REAL FOOTAGE! ", icon="✅") | |
st.text("fake probability {:.2f}".format(fake_probability)) | |
# os.remove(f"{base_folder}/{filename}") | |
folder_name = ".".join(filename.split(".")[:-1]) | |
shutil.rmtree(f"{base_folder}/images/{folder_name}") | |
except Exception as e: | |
if DEBUG: | |
st.text(processing_stdout.stdout.decode('utf-8')) | |
st.text(analyze_stdout.stdout.decode('utf-8')) | |
st.text("") | |
st.text(processing_stdout) | |
st.text(analyze_stdout) | |
st.write(e) | |
else: | |
st.text("Encountered a problem while analyzing video/image 🚨") | |
def setup(): | |
if not os.path.isdir("temps"): | |
os.makedirs("temps") | |
if __name__ == "__main__": | |
st.set_page_config( | |
page_title="Nodeflux Deepfake Detection", page_icon=":pencil2:" | |
) | |
st.title("Deepfake Detection") | |
setup() | |
main() |