Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
from networks.drn import drn_c_26 | |
def fill_up_weights(up): | |
w = up.weight.data | |
f = math.ceil(w.size(2) / 2) | |
c = (2 * f - 1 - f % 2) / (2. * f) | |
for i in range(w.size(2)): | |
for j in range(w.size(3)): | |
w[0, 0, i, j] = \ | |
(1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) | |
for c in range(1, w.size(0)): | |
w[c, 0, :, :] = w[0, 0, :, :] | |
class DRNSeg(nn.Module): | |
def __init__(self, classes, pretrained_drn=False, | |
pretrained_model=None, use_torch_up=False): | |
super(DRNSeg, self).__init__() | |
model = drn_c_26(pretrained=pretrained_drn) | |
self.base = nn.Sequential(*list(model.children())[:-2]) | |
if pretrained_model: | |
self.load_pretrained(pretrained_model) | |
self.seg = nn.Conv2d(model.out_dim, classes, | |
kernel_size=1, bias=True) | |
m = self.seg | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
m.bias.data.zero_() | |
if use_torch_up: | |
self.up = nn.UpsamplingBilinear2d(scale_factor=8) | |
else: | |
up = nn.ConvTranspose2d(classes, classes, 16, stride=8, padding=4, | |
output_padding=0, groups=classes, | |
bias=False) | |
fill_up_weights(up) | |
up.weight.requires_grad = False | |
self.up = up | |
def forward(self, x): | |
x = self.base(x) | |
x = self.seg(x) | |
y = self.up(x) | |
return y | |
def optim_parameters(self, memo=None): | |
for param in self.base.parameters(): | |
yield param | |
for param in self.seg.parameters(): | |
yield param | |
def load_pretrained(self, pretrained_model): | |
print("loading the pretrained drn model from %s" % pretrained_model) | |
state_dict = torch.load(pretrained_model, map_location='cpu') | |
if hasattr(state_dict, '_metadata'): | |
del state_dict._metadata | |
# filter out unnecessary keys | |
pretrained_dict = state_dict['model'] | |
pretrained_dict = {k[5:]: v for k, v in pretrained_dict.items() if k.split('.')[0] == 'base'} | |
# load the pretrained state dict | |
self.base.load_state_dict(pretrained_dict) | |
class DRNSub(nn.Module): | |
def __init__(self, num_classes, pretrained_model=None, fix_base=False): | |
super(DRNSub, self).__init__() | |
drnseg = DRNSeg(2) | |
if pretrained_model: | |
print("loading the pretrained drn model from %s" % pretrained_model) | |
state_dict = torch.load(pretrained_model, map_location='cpu') | |
drnseg.load_state_dict(state_dict['model']) | |
self.base = drnseg.base | |
if fix_base: | |
for param in self.base.parameters(): | |
param.requires_grad = False | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512, num_classes) | |
def forward(self, x): | |
x = self.base(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
return x | |