mle-case-study / main.py
manfredmichael's picture
Initial commit
966108f
raw
history blame
1.09 kB
from dotenv import load_dotenv
import json
import os
import uuid
from retrieval_pipeline import get_retriever, get_compression_retriever
import benchmark
load_dotenv()
ELASTICSEARCH_URL = os.getenv('ELASTICSEARCH_URL')
# HUGGINGFACE_KEY = os.getenv('HUGGINGFACE_KEY')
os.environ["ES_ENDPOINT"] = ELASTICSEARCH_URL
print(ELASTICSEARCH_URL)
if __name__ == "__main__":
retriever = get_retriever(index='masa.ai', elasticsearch_url=ELASTICSEARCH_URL)
compression_retriever = get_compression_retriever(retriever)
retrieved_chunks = compression_retriever.get_relevant_documents('Gunung Semeru')
print(retrieved_chunks)
# retrieved_chunks = retriever.get_relevant_documents('Gunung Semeru')
# print(retrieved_chunks)
benchmark.get_benchmark_result("benchmark-reranker.csv", retriever=compression_retriever)
# for i in range(100):
# query = input("query: ")
# retrieved_chunks = retriever.get_relevant_documents(query)
# print("Result:")
# for r in retrieved_chunks:
# print(r.page_content[:50])
# print()