Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
import json | |
import os, time | |
import uuid | |
from retrieval_pipeline import get_retriever, get_compression_retriever | |
from retrieval_pipeline.cache import SemanticCache | |
import benchmark | |
def get_result(query, retriever, use_cache): | |
t0 = time.time() | |
retrieved_chunks = retriever.get_relevant_documents(query, use_cache=use_cache) | |
latency = time.time() - t0 | |
return retrieved_chunks, latency | |
st.set_page_config( | |
layout="wide", | |
page_title="Retrieval Demo" | |
) | |
def setup_retriever(): | |
load_dotenv() | |
ELASTICSEARCH_URL = os.getenv('ELASTICSEARCH_URL') | |
retriever = get_retriever(index='masa.ai', elasticsearch_url=ELASTICSEARCH_URL) | |
compression_retriever = get_compression_retriever(retriever) | |
semantic_cache_retriever = SemanticCache(compression_retriever) | |
return semantic_cache_retriever | |
def retrieval_page(retriever, use_cache): | |
with st.form(key='input_form'): | |
query_input = st.text_area("Query Input") | |
submit_button = st.form_submit_button(label='Retrieve') | |
if submit_button: | |
with st.spinner('Processing...'): | |
result, latency = get_result(query_input, retriever=retriever, use_cache=use_cache) | |
st.subheader("Please find the retrieved documents below π") | |
st.write("latency:", latency, " s") | |
st.json(result) | |
def main(): | |
st.title("Part 3: Search") | |
use_cache = st.sidebar.toggle("Use cache", value=True) | |
st.sidebar.info(""" | |
**Retrieval Pipeline Evaluation Result:** | |
- **MRR**: 0.756 | |
- **Avg. Latency**: 4.50s (on CPU, with cache turned off) | |
- **Benchmark Result**: https://docs.google.com/spreadsheets/d/1WJnb8BieoxLch0gvb53ZzMS70r_G35PKm731ubdeNCA/edit?usp=sharing | |
""") | |
with st.spinner('Setting up...'): | |
retriever = setup_retriever() | |
retrieval_page(retriever, use_cache) | |
# with st.expander("Tech Stack Used"): | |
# st.markdown(""" | |
# **Flash Rank**: Ultra-lite & Super-fast Python library for search & retrieval re-ranking. | |
# - **Ultra-lite**: No heavy dependencies. Runs on CPU with a tiny ~4MB reranking model. | |
# - **Super-fast**: Speed depends on the number of tokens in passages and query, plus model depth. | |
# - **Cost-efficient**: Ideal for serverless deployments with low memory and time requirements. | |
# - **Based on State-of-the-Art Cross-encoders**: Includes models like ms-marco-TinyBERT-L-2-v2 (default), ms-marco-MiniLM-L-12-v2, rank-T5-flan, and ms-marco-MultiBERT-L-12. | |
# - **Sleek Models for Efficiency**: Designed for minimal overhead in user-facing scenarios. | |
# _Flash Rank is tailored for scenarios requiring efficient and effective reranking, balancing performance with resource usage._ | |
# """) | |
if __name__ == "__main__": | |
main() |