File size: 3,617 Bytes
cbab4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from transformers import pipeline
import torch
from IPython.display import Audio

device = "cuda:0" if torch.cuda.is_available() else "cpu"

classifier = pipeline(
    "audio-classification", model="MIT/ast-finetuned-speech-commands-v2", device=device
)

from transformers.pipelines.audio_utils import ffmpeg_microphone_live

print(classifier.model.config.id2label)

def launch_fn(
    wake_word="marvin",
    prob_threshold=0.5,
    chunk_length_s=2.0,
    stream_chunk_s=0.25,
    debug=False,
):
    if wake_word not in classifier.model.config.label2id.keys():
        raise ValueError(
            f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}."
        )

    sampling_rate = classifier.feature_extractor.sampling_rate

    mic = ffmpeg_microphone_live(
        sampling_rate=sampling_rate,
        chunk_length_s=chunk_length_s,
        stream_chunk_s=stream_chunk_s,
    )

    print("Listening for wake word...")
    for prediction in classifier(mic):
        prediction = prediction[0]
        if debug:
            print(prediction)
        if prediction["label"] == wake_word:
            if prediction["score"] > prob_threshold:
                return True
            
# launch_fn(debug=True)

transcriber = pipeline(
    "automatic-speech-recognition", model="openai/whisper-base.en", device=device
)

import sys


def transcribe(chunk_length_s=5.0, stream_chunk_s=1.0):
    sampling_rate = transcriber.feature_extractor.sampling_rate

    mic = ffmpeg_microphone_live(
        sampling_rate=sampling_rate,
        chunk_length_s=chunk_length_s,
        stream_chunk_s=stream_chunk_s,
    )

    print("Start speaking...")
    for item in transcriber(mic, generate_kwargs={"max_new_tokens": 128}):
        sys.stdout.write("\033[K")
        print(item["text"], end="\r")
        if not item["partial"][0]:
            break

    return item["text"]

from huggingface_hub import HfFolder
import requests


def query(text, model_id="tiiuae/falcon-7b-instruct"):
    api_url = f"https://api-inference.huggingface.co/models/{model_id}"
    headers = {"Authorization": f"Bearer {HfFolder().get_token()}"}
    payload = {"inputs": text}

    print(f"Querying...: {text}")
    response = requests.post(api_url, headers=headers, json=payload)
    return response.json()[0]["generated_text"][len(text) + 1 :]

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

from datasets import load_dataset

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def synthesise(text):
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(
        inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder
    )
    return speech.cpu()


# launch_fn()
# print("hablá")
# transcription = transcribe()
# response = query(transcription)
# audio = synthesise(response)


audio = synthesise(
    "Hugging Face is a company that provides natural language processing and machine learning tools for developers."
)





# import gradio as gr

# with gr.Blocks() as demo:
#     boton = gr.Button("hablar")
#     audio = gr.Audio()
#     micro = gr.Microphone()
#     boton.click(start,micro,audio)