Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer | |
import itertools | |
from nltk.corpus import stopwords | |
import nltk | |
import easyocr | |
import torch | |
import numpy as np | |
nltk.download('stopwords') | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
reader = easyocr.Reader(['en']) | |
# set up Streamlit app | |
st.set_page_config(layout='wide', page_title='Image Hashtag Recommender') | |
def genrate_caption(image_file): | |
image = Image.open(image_file).convert('RGB') | |
inputs = processor(image, return_tensors="pt") | |
output_ids = model.generate(**inputs) | |
output_text = processor.decode(output_ids[0], skip_special_tokens=True) | |
return output_text | |
st.title("Image Caption and HashTag Recommender") | |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if image_file is not None: | |
try: | |
caption = genrate_caption(image_file) | |
if len(caption) > 0: | |
st.write(f"Caption : {caption}") | |
else: | |
st.write("No caption found for this image.") | |
except Exception as e: | |
st.write(f"Error: {e}") | |