File size: 2,825 Bytes
196cfdb
9a397e5
 
196cfdb
 
 
 
 
 
 
778ff56
 
196cfdb
 
 
09e5655
196cfdb
 
 
 
 
 
 
09e5655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196cfdb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr

prologue = """quality: high
[System]
Assistant is a distilled language model trained by the community.<|STK_SP|>
[System]
<|STK_SP|>
[User]"""

tokenizer = AutoTokenizer.from_pretrained("mrsteyk/openchatgpt-neo-125m", use_fast=True)
model = AutoModelForCausalLM.from_pretrained("mrsteyk/openchatgpt-neo-125m")

def chat(inpt, max_new_tokens, top_k, top_p, temperature, repetition_penalty):
    inputs = tokenizer(f"{prologue}\n{inpt}<|STK_SP|>\n\n[Assistant]\n", return_tensors="pt").input_ids
    outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=True, top_k=top_k, top_p=top_p, eos_token_id=tokenizer.sep_token_id, temperature=temperature, repetition_penalty=repetition_penalty)
    return tokenizer.batch_decode([i[len(inputs[0]):] for i in outputs], skip_special_tokens=True)[0]

gr.Interface(
    fn=chat,
    inputs=["textbox", gr.Slider(767, 2048 + 1), gr.Slider(0, 100, value=50), gr.Slider(0, 1, step=0.01, value=0.95), gr.Slider(0.01, 1, step=0.01, value=1), gr.Slider(1, 100, step=0.5)],
    outputs=[gr.Textbox(label="Assistant says")],
    examples=[
        ["Hi!", 767, 50, 0.95, 1, 1],
        ["Hello, I am trying to use the fft function in Python, but I am not sure how to interpret the results. Can you explain how to interpret the output of the fft function?", 767, 50, 0.95, 1, 1],
        ["Hello, I have a question about American history. Who is the current Vice President of the United States?", 767, 50, 0.95, 1, 1],
        ["Hello, I have a question about quantum computing. Can quantum computers solve NP-complete problems in polynomial time?", 767, 50, 0.95, 1, 1],
        ["I'm wondering how to make an apple pie?", 767, 50, 0.95, 1, 1],
        ["Hey, what are some pros and cons of using a neural network for image recognition?", 767, 50, 0.95, 1, 1],
        ["Hi! I want to build a website using python and Flask. I just want to know what are the requirements for building a website using Flask?", 767, 50, 0.95, 1, 1],
        ["Hi, I want to know about the GPT-3 model. Could you provide me some information about it?", 767, 50, 0.95, 1, 1],
        ["Please, help me with GPT-2 training", 767, 50, 0.95, 1, 1],
        ["Please, help me understand LLMs!", 767, 50, 0.95, 1, 1],
        ["What are the health benefits of ginger?", 767, 50, 0.95, 1, 1],
        ["What is the fundamental theorem of algebra?", 767, 50, 0.95, 1, 1],
        ["What is the meaning of life?", 767, 50, 0.95, 1, 1],
        ["What is the origin of the word 'sushi'?", 767, 50, 0.95, 1, 1],
        ["What's the difference between a chatbot and an AI?", 767, 50, 0.95, 1, 1],
        ["What's the difference between a monad and a functor in functional programming?", 767, 50, 0.95, 1, 1],
    ]
).launch()