Spaces:
No application file
No application file
File size: 18,975 Bytes
3883c60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gc
import os.path
import tempfile
import gradio
import numpy
import numpy as np
import requests
import scipy.io.wavfile
import torch.cuda
# from TTS.api import TTS
# from TTS.utils.manage import ModelManager
import webui.modules.models as mod
from webui.modules.implementations.patches.bark_custom_voices import wav_to_semantics, generate_fine_from_wav, \
generate_course_history
from webui.ui.tabs import settings
hubert_models_cache = None
class BarkTTS(mod.TTSModelLoader):
no_install = True
@staticmethod
def get_voices():
found_prompts = []
base_path = 'data/bark_custom_speakers/'
for path, subdirs, files in os.walk(base_path):
for name in files:
if name.endswith('.npz'):
found_prompts.append(os.path.join(path, name)[len(base_path):-4])
from webui.modules.implementations.patches.bark_generation import ALLOWED_PROMPTS
return ['None'] + found_prompts + ALLOWED_PROMPTS
@staticmethod
def create_voice(file, clone_model):
clone_model_obj = [model for model in hubert_models_cache if model['name'].casefold() == clone_model.casefold()][0]
file_name = '.'.join(file.replace('\\', '/').split('/')[-1].split('.')[:-1])
out_file = f'data/bark_custom_speakers/{file_name}.npz'
semantic_prompt = wav_to_semantics(file, clone_model_obj)
fine_prompt = generate_fine_from_wav(file)
coarse_prompt = generate_course_history(fine_prompt)
np.savez(out_file,
semantic_prompt=semantic_prompt,
fine_prompt=fine_prompt,
coarse_prompt=coarse_prompt
)
return file_name
@staticmethod
def get_cloning_models():
global hubert_models_cache
if hubert_models_cache:
return hubert_models_cache
try:
r = requests.get('https://raw.githubusercontent.com/gitmylo/Voice-cloning-quantizers/main/models.json')
hubert_models_cache = r.json()
except: # No internet connection or something similar
hubert_models_cache = [
{
"name": "Base English",
"repo": "GitMylo/bark-voice-cloning",
"file": "quantifier_hubert_base_ls960_14.pth",
"language": "ENG",
"author": "https://github.com/gitmylo/",
"quant_version": 0,
"official": True,
"dlfilename": "tokenizer.pth",
"extra": {
"dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training"
}
},
{
"name": "Large English",
"repo": "GitMylo/bark-voice-cloning",
"file": "quantifier_V1_hubert_base_ls960_23.pth",
"language": "ENG",
"author": "https://github.com/gitmylo/",
"quant_version": 1,
"official": True,
"dlfilename": "tokenizer_large.pth",
"extra": {
"dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training"
}
}
]
return hubert_models_cache
def _components(self, **quick_kwargs):
def update_speaker(option):
if option == 'File':
speaker.hide = False
refresh_speakers.hide = False
speaker_file.hide = True
speaker_name.hide = True
clone_model.hide = True
npz_file.hide = True
speakers.hide = False
return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False)]
elif option == 'Clone':
speaker.hide = True
refresh_speakers.hide = True
speaker_file.hide = True
speaker_name.hide = False
clone_model.hide = False
npz_file.hide = True
speakers.hide = True
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)]
elif option == 'Upload .npz':
speaker.hide = True
refresh_speakers.hide = True
speaker_file.hide = True
speaker_name.hide = True
clone_model.hide = True
npz_file.hide = False
speakers.hide = True
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False),
gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)]
def update_input(option):
if option == 'Text':
textbox.hide = False
split_type.hide = False
audio_upload.hide = True
return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)]
else:
textbox.hide = True
split_type.hide = True
audio_upload.hide = False
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)]
def update_voices():
return gradio.update(choices=self.get_voices())
clone_models = [m['name'] for m in self.get_cloning_models()]
input_type = gradio.Radio(['Text', 'Audio'], label='Input type', value='Text', **quick_kwargs)
textbox = gradio.Textbox(lines=7, label='Input', placeholder='Text to speak goes here', info='For manual splitting, use enter. Otherwise, don\'t worry about it', **quick_kwargs)
split_type = gradio.Dropdown(['Manual', 'Strict short', 'Strict long', 'Non-strict short', 'Non-strict long'], value='Strict long', label='Splitting type', **quick_kwargs)
gen_prefix = gradio.Textbox(label='Generation prefix', info='Add this text before every generated chunk, better for keeping emotions.', **quick_kwargs)
input_lang_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Speech recognition bark quantizer.', info='The "voice cloning" model to use. Mainly for languages.', **quick_kwargs)
audio_upload = gradio.File(label='Words to speak', file_types=['audio'], **quick_kwargs)
input_lang_model.hide = True
audio_upload.hide = True
# with gradio.Row(visible=False) as temps:
text_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Text temperature', info='Affects the randomness of the generated speech patterns, like with Language models, higher is more random', **quick_kwargs)
waveform_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Waveform temperature', info='Affects the randomness of the audio generated from the previous generated speech patterns, like with Language models, higher is more random', **quick_kwargs)
with gradio.Accordion(label='Voice cloning guide and long form generations', open=False, visible=False) as a:
clone_guide = gradio.Markdown('''
## Long form generations
Split your long form generations with newlines (enter), every line will be generated individually, but as a continuation of the last.
Empty lines at the start and end will be skipped.
## When cloning a voice:
* The speaker will be saved in the data/bark_custom_speakers directory.
* The "file" output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning.
## Cloning guide (short edition)
* Clear spoken, no noise, no music.
* Ends after a short pause for best results.
* The speaker will be saved in the data/bark_custom_speakers directory.
* The βfileβ output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning.
''', visible=False)
mode = gradio.Radio(['File', 'Clone', 'Upload .npz'], label='Speaker from', value='File', **quick_kwargs)
with gradio.Row(visible=False) as speakers:
speaker = gradio.Dropdown(self.get_voices(), value='None', show_label=False, **quick_kwargs)
refresh_speakers = gradio.Button('π', variant='tool secondary', **quick_kwargs)
refresh_speakers.click(fn=update_voices, outputs=speaker)
clone_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Voice cloning model.', info='The voice cloning model to use. Mainly for languages.', **quick_kwargs)
speaker_name = gradio.Textbox(label='Speaker name', info='The name to save the speaker as, random if empty', **quick_kwargs)
speaker_file = gradio.Audio(label='Speaker', **quick_kwargs)
clone_model.hide = True
speaker_name.hide = True
speaker_file.hide = True # Custom, auto hide speaker_file
npz_file = gradio.File(label='Npz file', file_types=['.npz'], **quick_kwargs)
npz_file.hide = True
keep_generating = gradio.Checkbox(label='Keep it up (keep generating)', value=False, **quick_kwargs)
min_eos_p = gradio.Slider(0.05, 1, 0.2, step=0.05, label='min end of audio probability', info='Lower values cause the generation to stop sooner, higher values make it do more, 1 is about the same as keep generating being on.', **quick_kwargs)
mode.change(fn=update_speaker, inputs=mode, outputs=[speakers, speaker, refresh_speakers, speaker_file, speaker_name, clone_model, npz_file])
input_type.change(fn=update_input, inputs=input_type, outputs=[textbox, split_type, audio_upload, input_lang_model, gen_prefix])
return [textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp,
speaker, speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, speakers, min_eos_p, a, clone_model, input_lang_model,
npz_file, split_type]
model = 'suno/bark'
def get_response(self, *inputs, progress=gradio.Progress()):
textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp, speaker,\
speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, min_eos_p, clone_model,\
input_lang_model, npz_file, split_type = inputs
_speaker = None
if mode == 'File':
_speaker = speaker if speaker != 'None' else None
elif mode == 'Clone':
speaker_sr, speaker_wav = speaker_file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
if speaker_name:
temp_file.name = os.path.join(os.path.dirname(temp_file.name), speaker_name + '.wav')
scipy.io.wavfile.write(temp_file.name, speaker_sr, speaker_wav)
_speaker = self.create_voice(temp_file.name, clone_model)
elif mode == 'Upload .npz':
_speaker = npz_file.name
from webui.modules.implementations.patches.bark_api import generate_audio_new, semantic_to_waveform_new
from bark.generation import SAMPLE_RATE
if input_type == 'Text':
history_prompt, audio = generate_audio_new(textbox, _speaker, text_temp, waveform_temp, output_full=True,
allow_early_stop=not keep_generating, min_eos_p=min_eos_p,
gen_prefix=gen_prefix, progress=progress, split_type=split_type)
else:
input_lang_model_obj = \
[model for model in hubert_models_cache if model['name'].casefold() == input_lang_model.casefold()][0]
semantics = wav_to_semantics(audio_upload.name, input_lang_model_obj).numpy()
history_prompt, audio = semantic_to_waveform_new(semantics, _speaker, waveform_temp, output_full=True,
progress=progress)
temp = tempfile.NamedTemporaryFile(delete=False)
temp.name = temp.name.replace(temp.name.replace('\\', '/').split('/')[-1], 'speaker.npz')
numpy.savez(temp.name, **history_prompt)
return (SAMPLE_RATE, audio), temp.name
def unload_model(self):
# from bark.generation import clean_models
# clean_models()
import bark.generation as bark_gen
model_keys = list(bark_gen.models.keys())
for k in model_keys:
if k in bark_gen.models:
del bark_gen.models[k]
bark_gen._clear_cuda_cache()
gc.collect()
def load_model(self, progress=gradio.Progress()):
from webui.modules.implementations.patches.bark_generation import preload_models_new
gpu = not settings.get('bark_use_cpu')
preload_models_new(
text_use_gpu=gpu,
fine_use_gpu=gpu,
coarse_use_gpu=gpu,
codec_use_gpu=gpu,
progress=progress
)
# class CoquiTTS(mod.TTSModelLoader):
# no_install = True
# model = 'Coqui TTS'
#
# current_model: TTS = None
# current_model_name: str = None
#
# def load_model(self, progress=gradio.Progress()):
# pass
#
# def unload_model(self):
# self.current_model_name = None
# self.current_model = None
# gc.collect()
# torch.cuda.empty_cache()
#
# def tts_speakers(self):
# if self.current_model is None:
# return gradio.update(choices=[]), gradio.update(choices=[])
# speakers = list(
# dict.fromkeys([speaker.strip() for speaker in self.current_model.speakers])) if self.current_model.is_multi_speaker else []
# languages = list(dict.fromkeys(self.current_model.languages)) if self.current_model.is_multi_lingual else []
# return gradio.update(choices=speakers), gradio.update(choices=languages)
#
# def _components(self, **quick_kwargs):
# with gradio.Row(visible=False) as r1:
# selected_tts = gradio.Dropdown(ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False).list_tts_models(), label='TTS model', info='The TTS model to use for text-to-speech',
# allow_custom_value=True, **quick_kwargs)
# selected_tts_unload = gradio.Button('π£', variant='primary tool offset--10', **quick_kwargs)
#
# with gradio.Row(visible=False) as r2:
# speaker_tts = gradio.Dropdown(self.tts_speakers()[0]['choices'], label='TTS speaker',
# info='The speaker to use for the TTS model, only for multi speaker models.', **quick_kwargs)
# speaker_tts_refresh = gradio.Button('π', variant='primary tool offset--10', **quick_kwargs)
#
# with gradio.Row(visible=False) as r3:
# lang_tts = gradio.Dropdown(self.tts_speakers()[1]['choices'], label='TTS language',
# info='The language to use for the TTS model, only for multilingual models.', **quick_kwargs)
# lang_tts_refresh = gradio.Button('π', variant='primary tool offset--10', **quick_kwargs)
#
# speaker_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts])
# lang_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts])
#
# def load_tts(model):
# if self.current_model_name != model:
# unload_tts()
# self.current_model_name = model
# self.current_model = TTS(model, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False)
# return gradio.update(value=model), *self.tts_speakers()
#
# def unload_tts():
# if self.current_model is not None:
# self.current_model = None
# self.current_model_name = None
# gc.collect()
# torch.cuda.empty_cache()
# return gradio.update(value=''), *self.tts_speakers()
#
# selected_tts_unload.click(fn=unload_tts, outputs=[selected_tts, speaker_tts, lang_tts])
# selected_tts.select(fn=load_tts, inputs=selected_tts, outputs=[selected_tts, speaker_tts, lang_tts])
#
# text_input = gradio.TextArea(label='Text to speech text',
# info='Text to speech text if no audio file is used as input.', **quick_kwargs)
#
# return selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input, r1, r2, r3
#
#
#
# def get_response(self, *inputs, progress=gradio.Progress()):
# selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input = inputs
# if self.current_model_name != selected_tts:
# if self.current_model is not None:
# self.current_model = None
# self.current_model_name = None
# gc.collect()
# torch.cuda.empty_cache()
# self.current_model_name = selected_tts
# self.current_model = TTS(selected_tts, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False)
# audio = np.array(self.current_model.tts(text_input, speaker_tts if self.current_model.is_multi_speaker else None, lang_tts if self.current_model.is_multi_lingual else None))
# audio_tuple = (self.current_model.synthesizer.output_sample_rate, audio)
# return audio_tuple, None
elements = []
def init_elements():
global elements
import webui.extensionlib.callbacks as cb
extension_elements = []
for el in cb.get_manager('webui.tts.list')():
if isinstance(el, mod.TTSModelLoader):
extension_elements.append(el)
elif isinstance(el, list):
extension_elements += el
extension_elements = [e for e in extension_elements if isinstance(e, mod.TTSModelLoader)] # Cleanup
elements = [BarkTTS()] + extension_elements
def all_tts() -> list[mod.TTSModelLoader]:
if not elements:
init_elements()
return elements
def all_elements(in_dict):
l = []
for value in in_dict.values():
l += value
return l
def all_elements_dict():
d = {}
for tts in all_tts():
d[tts.model] = tts.gradio_components()
return d
|