File size: 18,975 Bytes
3883c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import gc
import os.path
import tempfile

import gradio
import numpy
import numpy as np
import requests
import scipy.io.wavfile
import torch.cuda
# from TTS.api import TTS
# from TTS.utils.manage import ModelManager

import webui.modules.models as mod
from webui.modules.implementations.patches.bark_custom_voices import wav_to_semantics, generate_fine_from_wav, \
    generate_course_history
from webui.ui.tabs import settings

hubert_models_cache = None


class BarkTTS(mod.TTSModelLoader):
    no_install = True

    @staticmethod
    def get_voices():
        found_prompts = []
        base_path = 'data/bark_custom_speakers/'
        for path, subdirs, files in os.walk(base_path):
            for name in files:
                if name.endswith('.npz'):
                    found_prompts.append(os.path.join(path, name)[len(base_path):-4])
        from webui.modules.implementations.patches.bark_generation import ALLOWED_PROMPTS
        return ['None'] + found_prompts + ALLOWED_PROMPTS

    @staticmethod
    def create_voice(file, clone_model):
        clone_model_obj = [model for model in hubert_models_cache if model['name'].casefold() == clone_model.casefold()][0]
        file_name = '.'.join(file.replace('\\', '/').split('/')[-1].split('.')[:-1])
        out_file = f'data/bark_custom_speakers/{file_name}.npz'

        semantic_prompt = wav_to_semantics(file, clone_model_obj)
        fine_prompt = generate_fine_from_wav(file)
        coarse_prompt = generate_course_history(fine_prompt)


        np.savez(out_file,
                 semantic_prompt=semantic_prompt,
                 fine_prompt=fine_prompt,
                 coarse_prompt=coarse_prompt
                 )
        return file_name

    @staticmethod
    def get_cloning_models():
        global hubert_models_cache
        if hubert_models_cache:
            return hubert_models_cache
        try:
            r = requests.get('https://raw.githubusercontent.com/gitmylo/Voice-cloning-quantizers/main/models.json')
            hubert_models_cache = r.json()
        except:  # No internet connection or something similar
            hubert_models_cache = [
                {
                    "name": "Base English",
                    "repo": "GitMylo/bark-voice-cloning",
                    "file": "quantifier_hubert_base_ls960_14.pth",
                    "language": "ENG",
                    "author": "https://github.com/gitmylo/",
                    "quant_version": 0,
                    "official": True,
                    "dlfilename": "tokenizer.pth",
                    "extra": {
                        "dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training"
                    }
                },
                {
                    "name": "Large English",
                    "repo": "GitMylo/bark-voice-cloning",
                    "file": "quantifier_V1_hubert_base_ls960_23.pth",
                    "language": "ENG",
                    "author": "https://github.com/gitmylo/",
                    "quant_version": 1,
                    "official": True,
                    "dlfilename": "tokenizer_large.pth",
                    "extra": {
                        "dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training"
                    }
                }
            ]
        return hubert_models_cache

    def _components(self, **quick_kwargs):
        def update_speaker(option):
            if option == 'File':
                speaker.hide = False
                refresh_speakers.hide = False
                speaker_file.hide = True
                speaker_name.hide = True
                clone_model.hide = True
                npz_file.hide = True
                speakers.hide = False
                return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False)]
            elif option == 'Clone':
                speaker.hide = True
                refresh_speakers.hide = True
                speaker_file.hide = True
                speaker_name.hide = False
                clone_model.hide = False
                npz_file.hide = True
                speakers.hide = True
                return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)]
            elif option == 'Upload .npz':
                speaker.hide = True
                refresh_speakers.hide = True
                speaker_file.hide = True
                speaker_name.hide = True
                clone_model.hide = True
                npz_file.hide = False
                speakers.hide = True
                return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False),
                        gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)]

        def update_input(option):
            if option == 'Text':
                textbox.hide = False
                split_type.hide = False
                audio_upload.hide = True
                return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)]
            else:
                textbox.hide = True
                split_type.hide = True
                audio_upload.hide = False
                return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)]

        def update_voices():
            return gradio.update(choices=self.get_voices())

        clone_models = [m['name'] for m in self.get_cloning_models()]

        input_type = gradio.Radio(['Text', 'Audio'], label='Input type', value='Text', **quick_kwargs)
        textbox = gradio.Textbox(lines=7, label='Input', placeholder='Text to speak goes here', info='For manual splitting, use enter. Otherwise, don\'t worry about it', **quick_kwargs)
        split_type = gradio.Dropdown(['Manual', 'Strict short', 'Strict long', 'Non-strict short', 'Non-strict long'], value='Strict long', label='Splitting type', **quick_kwargs)

        gen_prefix = gradio.Textbox(label='Generation prefix', info='Add this text before every generated chunk, better for keeping emotions.', **quick_kwargs)
        input_lang_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Speech recognition bark quantizer.', info='The "voice cloning" model to use. Mainly for languages.', **quick_kwargs)
        audio_upload = gradio.File(label='Words to speak', file_types=['audio'], **quick_kwargs)
        input_lang_model.hide = True
        audio_upload.hide = True
        # with gradio.Row(visible=False) as temps:
        text_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Text temperature', info='Affects the randomness of the generated speech patterns, like with Language models, higher is more random', **quick_kwargs)
        waveform_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Waveform temperature', info='Affects the randomness of the audio generated from the previous generated speech patterns, like with Language models, higher is more random', **quick_kwargs)

        with gradio.Accordion(label='Voice cloning guide and long form generations', open=False, visible=False) as a:
            clone_guide = gradio.Markdown('''
            ## Long form generations
            Split your long form generations with newlines (enter), every line will be generated individually, but as a continuation of the last.

            Empty lines at the start and end will be skipped.

            ## When cloning a voice:
            * The speaker will be saved in the data/bark_custom_speakers directory.
            * The "file" output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning.

            ## Cloning guide (short edition)
            * Clear spoken, no noise, no music.
            * Ends after a short pause for best results.
            * The speaker will be saved in the data/bark_custom_speakers directory.
            * The β€œfile” output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning.
                    ''', visible=False)

        mode = gradio.Radio(['File', 'Clone', 'Upload .npz'], label='Speaker from', value='File', **quick_kwargs)
        with gradio.Row(visible=False) as speakers:
            speaker = gradio.Dropdown(self.get_voices(), value='None', show_label=False, **quick_kwargs)
            refresh_speakers = gradio.Button('πŸ”ƒ', variant='tool secondary', **quick_kwargs)
        refresh_speakers.click(fn=update_voices, outputs=speaker)
        clone_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Voice cloning model.', info='The voice cloning model to use. Mainly for languages.', **quick_kwargs)
        speaker_name = gradio.Textbox(label='Speaker name', info='The name to save the speaker as, random if empty', **quick_kwargs)
        speaker_file = gradio.Audio(label='Speaker', **quick_kwargs)
        clone_model.hide = True
        speaker_name.hide = True
        speaker_file.hide = True  # Custom, auto hide speaker_file

        npz_file = gradio.File(label='Npz file', file_types=['.npz'], **quick_kwargs)
        npz_file.hide = True

        keep_generating = gradio.Checkbox(label='Keep it up (keep generating)', value=False, **quick_kwargs)
        min_eos_p = gradio.Slider(0.05, 1, 0.2, step=0.05, label='min end of audio probability', info='Lower values cause the generation to stop sooner, higher values make it do more, 1 is about the same as keep generating being on.', **quick_kwargs)

        mode.change(fn=update_speaker, inputs=mode, outputs=[speakers, speaker, refresh_speakers, speaker_file, speaker_name, clone_model, npz_file])
        input_type.change(fn=update_input, inputs=input_type, outputs=[textbox, split_type, audio_upload, input_lang_model, gen_prefix])
        return [textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp,
                speaker, speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, speakers, min_eos_p, a, clone_model, input_lang_model,
                npz_file, split_type]

    model = 'suno/bark'

    def get_response(self, *inputs, progress=gradio.Progress()):
        textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp, speaker,\
            speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, min_eos_p, clone_model,\
            input_lang_model, npz_file, split_type = inputs
        _speaker = None
        if mode == 'File':
            _speaker = speaker if speaker != 'None' else None
        elif mode == 'Clone':
            speaker_sr, speaker_wav = speaker_file
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
            if speaker_name:
                temp_file.name = os.path.join(os.path.dirname(temp_file.name), speaker_name + '.wav')
            scipy.io.wavfile.write(temp_file.name, speaker_sr, speaker_wav)
            _speaker = self.create_voice(temp_file.name, clone_model)
        elif mode == 'Upload .npz':
            _speaker = npz_file.name
        from webui.modules.implementations.patches.bark_api import generate_audio_new, semantic_to_waveform_new
        from bark.generation import SAMPLE_RATE
        if input_type == 'Text':
            history_prompt, audio = generate_audio_new(textbox, _speaker, text_temp, waveform_temp, output_full=True,
                                                       allow_early_stop=not keep_generating, min_eos_p=min_eos_p,
                                                       gen_prefix=gen_prefix, progress=progress, split_type=split_type)
        else:
            input_lang_model_obj = \
            [model for model in hubert_models_cache if model['name'].casefold() == input_lang_model.casefold()][0]
            semantics = wav_to_semantics(audio_upload.name, input_lang_model_obj).numpy()
            history_prompt, audio = semantic_to_waveform_new(semantics, _speaker, waveform_temp, output_full=True,
                                                             progress=progress)
        temp = tempfile.NamedTemporaryFile(delete=False)
        temp.name = temp.name.replace(temp.name.replace('\\', '/').split('/')[-1], 'speaker.npz')
        numpy.savez(temp.name, **history_prompt)
        return (SAMPLE_RATE, audio), temp.name

    def unload_model(self):
        # from bark.generation import clean_models
        # clean_models()

        import bark.generation as bark_gen
        model_keys = list(bark_gen.models.keys())
        for k in model_keys:
            if k in bark_gen.models:
                del bark_gen.models[k]
        bark_gen._clear_cuda_cache()
        gc.collect()

    def load_model(self, progress=gradio.Progress()):
        from webui.modules.implementations.patches.bark_generation import preload_models_new
        gpu = not settings.get('bark_use_cpu')
        preload_models_new(
            text_use_gpu=gpu,
            fine_use_gpu=gpu,
            coarse_use_gpu=gpu,
            codec_use_gpu=gpu,
            progress=progress
        )


# class CoquiTTS(mod.TTSModelLoader):
#     no_install = True
#     model = 'Coqui TTS'
#
#     current_model: TTS = None
#     current_model_name: str = None
#
#     def load_model(self, progress=gradio.Progress()):
#         pass
#
#     def unload_model(self):
#         self.current_model_name = None
#         self.current_model = None
#         gc.collect()
#         torch.cuda.empty_cache()
#
#     def tts_speakers(self):
#         if self.current_model is None:
#             return gradio.update(choices=[]), gradio.update(choices=[])
#         speakers = list(
#             dict.fromkeys([speaker.strip() for speaker in self.current_model.speakers])) if self.current_model.is_multi_speaker else []
#         languages = list(dict.fromkeys(self.current_model.languages)) if self.current_model.is_multi_lingual else []
#         return gradio.update(choices=speakers), gradio.update(choices=languages)
#
#     def _components(self, **quick_kwargs):
#         with gradio.Row(visible=False) as r1:
#             selected_tts = gradio.Dropdown(ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False).list_tts_models(), label='TTS model', info='The TTS model to use for text-to-speech',
#                                            allow_custom_value=True, **quick_kwargs)
#             selected_tts_unload = gradio.Button('πŸ’£', variant='primary tool offset--10', **quick_kwargs)
#
#         with gradio.Row(visible=False) as r2:
#             speaker_tts = gradio.Dropdown(self.tts_speakers()[0]['choices'], label='TTS speaker',
#                                           info='The speaker to use for the TTS model, only for multi speaker models.', **quick_kwargs)
#             speaker_tts_refresh = gradio.Button('πŸ”ƒ', variant='primary tool offset--10', **quick_kwargs)
#
#         with gradio.Row(visible=False) as r3:
#             lang_tts = gradio.Dropdown(self.tts_speakers()[1]['choices'], label='TTS language',
#                                        info='The language to use for the TTS model, only for multilingual models.', **quick_kwargs)
#             lang_tts_refresh = gradio.Button('πŸ”ƒ', variant='primary tool offset--10', **quick_kwargs)
#
#         speaker_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts])
#         lang_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts])
#
#         def load_tts(model):
#             if self.current_model_name != model:
#                 unload_tts()
#                 self.current_model_name = model
#                 self.current_model = TTS(model, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False)
#             return gradio.update(value=model), *self.tts_speakers()
#
#         def unload_tts():
#             if self.current_model is not None:
#                 self.current_model = None
#                 self.current_model_name = None
#                 gc.collect()
#                 torch.cuda.empty_cache()
#             return gradio.update(value=''), *self.tts_speakers()
#
#         selected_tts_unload.click(fn=unload_tts, outputs=[selected_tts, speaker_tts, lang_tts])
#         selected_tts.select(fn=load_tts, inputs=selected_tts, outputs=[selected_tts, speaker_tts, lang_tts])
#
#         text_input = gradio.TextArea(label='Text to speech text',
#                                      info='Text to speech text if no audio file is used as input.', **quick_kwargs)
#
#         return selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input, r1, r2, r3
#
#
#
#     def get_response(self, *inputs, progress=gradio.Progress()):
#         selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input = inputs
#         if self.current_model_name != selected_tts:
#             if self.current_model is not None:
#                 self.current_model = None
#                 self.current_model_name = None
#                 gc.collect()
#                 torch.cuda.empty_cache()
#             self.current_model_name = selected_tts
#             self.current_model = TTS(selected_tts, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False)
#         audio = np.array(self.current_model.tts(text_input, speaker_tts if self.current_model.is_multi_speaker else None, lang_tts if self.current_model.is_multi_lingual else None))
#         audio_tuple = (self.current_model.synthesizer.output_sample_rate, audio)
#         return audio_tuple, None


elements = []


def init_elements():
    global elements

    import webui.extensionlib.callbacks as cb
    extension_elements = []
    for el in cb.get_manager('webui.tts.list')():
        if isinstance(el, mod.TTSModelLoader):
            extension_elements.append(el)
        elif isinstance(el, list):
            extension_elements += el
    extension_elements = [e for e in extension_elements if isinstance(e, mod.TTSModelLoader)]  # Cleanup
    elements = [BarkTTS()] + extension_elements


def all_tts() -> list[mod.TTSModelLoader]:
    if not elements:
        init_elements()
    return elements


def all_elements(in_dict):
    l = []
    for value in in_dict.values():
        l += value
    return l


def all_elements_dict():
    d = {}
    for tts in all_tts():
        d[tts.model] = tts.gradio_components()
    return d