File size: 4,201 Bytes
3883c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import traceback
from collections import OrderedDict

import torch


def savee(ckpt, sr, if_f0, name, epoch, version):
    try:
        opt = OrderedDict()
        opt["weight"] = {}
        for key in ckpt.keys():
            if "enc_q" in key:
                continue
            opt["weight"][key] = ckpt[key].half()
        if sr == "40k":
            opt["config"] = [
                1025,
                32,
                192,
                192,
                768,
                2,
                6,
                3,
                0,
                "1",
                [3, 7, 11],
                [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                [10, 10, 2, 2],
                512,
                [16, 16, 4, 4],
                109,
                256,
                40000,
            ]
        elif sr == "48k":
            opt["config"] = [
                1025,
                32,
                192,
                192,
                768,
                2,
                6,
                3,
                0,
                "1",
                [3, 7, 11],
                [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                [10, 6, 2, 2, 2],
                512,
                [16, 16, 4, 4, 4],
                109,
                256,
                48000,
            ]
        elif sr == "32k":
            opt["config"] = [
                513,
                32,
                192,
                192,
                768,
                2,
                6,
                3,
                0,
                "1",
                [3, 7, 11],
                [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
                [10, 4, 2, 2, 2],
                512,
                [16, 16, 4, 4, 4],
                109,
                256,
                32000,
            ]
        opt["info"] = "%sepoch" % epoch
        opt["sr"] = sr
        opt["f0"] = if_f0
        opt["version"] = version
        os.makedirs(os.path.dirname(name), exist_ok=True)
        torch.save(opt, name)
        return "Success."
    except:
        return traceback.format_exc()


def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
    torch.save(
        {
            "model": state_dict,
            "iteration": iteration,
            "optimizer": optimizer.state_dict(),
            "learning_rate": learning_rate,
        },
        checkpoint_path,
    )


def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")

    saved_state_dict = checkpoint_dict["model"]
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():  # 模型需要的shape
        try:
            new_state_dict[k] = saved_state_dict[k]
            if saved_state_dict[k].shape != state_dict[k].shape:
                print(
                    "shape-%s-mismatch|need-%s|get-%s"
                    % (k, state_dict[k].shape, saved_state_dict[k].shape)
                )  #
                raise KeyError
        except:
            # logger.info(traceback.format_exc())
            new_state_dict[k] = v  # 模型自带的随机值
    if hasattr(model, "module"):
        model.module.load_state_dict(new_state_dict, strict=False)
    else:
        model.load_state_dict(new_state_dict, strict=False)

    iteration = checkpoint_dict["iteration"]
    learning_rate = checkpoint_dict["learning_rate"]
    if (
        optimizer is not None and load_opt == 1
    ):  ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
        #   try:
        optimizer.load_state_dict(checkpoint_dict["optimizer"])
    #   except:
    #     traceback.print_exc()
    return model, optimizer, learning_rate, iteration