Spaces:
No application file
No application file
from typing import Union | |
import bark.generation as o | |
import gradio | |
from bark.generation import * | |
from webui.ui.tabs import settings | |
SUPPORTED_LANGS = [ | |
("English", "en"), | |
("German", "de"), | |
("Spanish", "es"), | |
("French", "fr"), | |
("Hindi", "hi"), | |
("Italian", "it"), | |
("Japanese", "ja"), | |
("Korean", "ko"), | |
("Polish", "pl"), | |
("Portuguese", "pt"), | |
("Russian", "ru"), | |
("Turkish", "tr"), | |
("Chinese", "zh"), | |
] | |
ALLOWED_PROMPTS = ["announcer"] | |
for _, lang in SUPPORTED_LANGS: | |
for prefix in ("", f"v2{os.path.sep}"): | |
for n in range(10): | |
ALLOWED_PROMPTS.append(f"{prefix}{lang}_speaker_{n}") | |
for n in range(10): | |
ALLOWED_PROMPTS.append(f"speaker_{n}") | |
def generate_text_semantic_new( | |
text, | |
history_prompt: Union[str, dict] = None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
min_eos_p=0.2, | |
max_gen_duration_s=None, | |
allow_early_stop=True, | |
use_kv_caching=False, | |
progress=gradio.Progress() | |
): | |
"""Generate semantic tokens from text.""" | |
assert isinstance(text, str) | |
text = o._normalize_whitespace(text) | |
# assert len(text.strip()) > 0 | |
if history_prompt is not None: | |
skip = False | |
if isinstance(history_prompt, dict): | |
semantic_history = history_prompt['semantic_prompt'] | |
elif history_prompt.endswith(".npz"): | |
semantic_history = np.load(history_prompt)["semantic_prompt"] | |
else: | |
if history_prompt in ALLOWED_PROMPTS: | |
semantic_history = np.load( | |
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") | |
)["semantic_prompt"] | |
else: | |
filename = f'data/bark_custom_speakers/{history_prompt}.npz' | |
if os.path.isfile(filename): | |
semantic_history = np.load( | |
filename | |
)["semantic_prompt"] | |
else: | |
skip = True | |
if not skip: | |
assert ( | |
isinstance(semantic_history, np.ndarray) | |
and len(semantic_history.shape) == 1 | |
and len(semantic_history) > 0 | |
and semantic_history.min() >= 0 | |
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
else: | |
semantic_history = None | |
else: | |
semantic_history = None | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "text" not in models: | |
preload_models_new() | |
model_container = models["text"] | |
model = model_container["model"] | |
tokenizer = model_container["tokenizer"] | |
encoded_text = np.array(o._tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET | |
if settings.get('bark_offload_cpu'): | |
model.to(models_devices["text"]) | |
device = next(model.parameters()).device | |
if len(encoded_text) > 256: | |
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) | |
logger.warning(f"warning, text too long, lopping of last {p}%") | |
encoded_text = encoded_text[:256] | |
encoded_text = np.pad( | |
encoded_text, | |
(0, 256 - len(encoded_text)), | |
constant_values=TEXT_PAD_TOKEN, | |
mode="constant", | |
) | |
if semantic_history is not None: | |
semantic_history = semantic_history.astype(np.int64) | |
# lop off if history is too long, pad if needed | |
semantic_history = semantic_history[-256:] | |
semantic_history = np.pad( | |
semantic_history, | |
(0, 256 - len(semantic_history)), | |
constant_values=SEMANTIC_PAD_TOKEN, | |
mode="constant", | |
) | |
else: | |
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) | |
x = torch.from_numpy( | |
np.hstack([ | |
encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN]) | |
]).astype(np.int64) | |
)[None] | |
assert x.shape[1] == 256 + 256 + 1 | |
with o._inference_mode(): | |
x = x.to(device) | |
n_tot_steps = 768 | |
# custom tqdm updates since we don't know when eos will occur | |
# pbar = tqdm.tqdm(disable=silent, total=100, desc='Generating semantics...') | |
pbar_state = 0 | |
tot_generated_duration_s = 0 | |
kv_cache = None | |
for n in range(n_tot_steps): | |
if use_kv_caching and kv_cache is not None: | |
x_input = x[:, [-1]] | |
else: | |
x_input = x | |
logits, kv_cache = model( | |
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache | |
) | |
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] | |
if allow_early_stop: | |
relevant_logits = torch.hstack( | |
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos | |
) | |
if top_p is not None: | |
# faster to convert to numpy | |
logits_device = relevant_logits.device | |
logits_dtype = relevant_logits.type() | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
item_next = torch.multinomial(probs, num_samples=1) | |
probs = probs.to(inf_device) | |
item_next = item_next.to(inf_device) | |
if allow_early_stop and ( | |
item_next == SEMANTIC_VOCAB_SIZE | |
or (min_eos_p is not None and probs[-1] >= min_eos_p) | |
): | |
# eos found, so break | |
# pbar.update(100 - pbar_state) | |
progress((pbar_state, 100), desc='Generating semantics...') | |
break | |
x = torch.cat((x, item_next[None]), dim=1) | |
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ | |
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: | |
# pbar.update(100 - pbar_state) | |
progress((pbar_state, 100), desc='Generating semantics...') | |
break | |
if n == n_tot_steps - 1: | |
# pbar.update(100 - pbar_state) | |
progress((pbar_state, 100), desc='Generating semantics...') | |
break | |
del logits, relevant_logits, probs, item_next | |
req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))]) | |
if req_pbar_state > pbar_state: | |
# pbar.update(req_pbar_state - pbar_state) | |
progress((pbar_state, req_pbar_state), desc='Generating semantics...') | |
pbar_state = req_pbar_state | |
# pbar.close() | |
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1:] | |
if settings.get('bark_offload_cpu'): | |
model.to("cpu") | |
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) | |
o._clear_cuda_cache() | |
return out | |
def generate_coarse_new( | |
x_semantic, | |
history_prompt: Union[str, dict] = None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
max_coarse_history=630, # min 60 (faster), max 630 (more context) | |
sliding_window_len=60, | |
use_kv_caching=False, | |
progress=gradio.Progress() | |
): | |
"""Generate coarse audio codes from semantic tokens.""" | |
assert ( | |
isinstance(x_semantic, np.ndarray) | |
and len(x_semantic.shape) == 1 | |
and len(x_semantic) > 0 | |
and x_semantic.min() >= 0 | |
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
assert 60 <= max_coarse_history <= 630 | |
assert max_coarse_history + sliding_window_len <= 1024 - 256 | |
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS | |
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) | |
if history_prompt is not None: | |
skip = False | |
if isinstance(history_prompt, dict): | |
x_history = history_prompt | |
elif history_prompt.endswith(".npz"): | |
x_history = np.load(history_prompt) | |
else: | |
if history_prompt in ALLOWED_PROMPTS: | |
x_history = np.load( | |
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") | |
) | |
else: | |
filename = f'data/bark_custom_speakers/{history_prompt}.npz' | |
if os.path.isfile(filename): | |
x_history = np.load( | |
filename | |
) | |
else: | |
skip = True | |
if not skip: | |
x_semantic_history = x_history["semantic_prompt"] | |
x_coarse_history = x_history["coarse_prompt"] | |
assert ( | |
isinstance(x_semantic_history, np.ndarray) | |
and len(x_semantic_history.shape) == 1 | |
and len(x_semantic_history) > 0 | |
and x_semantic_history.min() >= 0 | |
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
and isinstance(x_coarse_history, np.ndarray) | |
and len(x_coarse_history.shape) == 2 | |
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS | |
and x_coarse_history.shape[-1] >= 0 | |
and x_coarse_history.min() >= 0 | |
and x_coarse_history.max() <= CODEBOOK_SIZE - 1 | |
# and ( | |
# round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) | |
# == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) | |
# ) | |
) | |
x_coarse_history = o._flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE | |
# trim histories correctly | |
n_semantic_hist_provided = np.min( | |
[ | |
max_semantic_history, | |
len(x_semantic_history) - len(x_semantic_history) % 2, | |
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), | |
] | |
) | |
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) | |
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) | |
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) | |
# TODO: bit of a hack for time alignment (sounds better) | |
x_coarse_history = x_coarse_history[:-2] | |
else: | |
x_semantic_history = np.array([], dtype=np.int32) | |
x_coarse_history = np.array([], dtype=np.int32) | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "coarse" not in models: | |
preload_models_new() | |
model = models["coarse"] | |
if settings.get('bark_offload_cpu'): | |
model.to(models_devices["coarse"]) | |
device = next(model.parameters()).device | |
# start loop | |
n_steps = int( | |
round( | |
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) | |
* N_COARSE_CODEBOOKS | |
) | |
) | |
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 | |
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) | |
x_coarse = x_coarse_history.astype(np.int32) | |
base_semantic_idx = len(x_semantic_history) | |
with o._inference_mode(): | |
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device) | |
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device) | |
n_window_steps = int(np.ceil(n_steps / sliding_window_len)) | |
n_step = 0 | |
for curr_step in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent, desc='Generating coarse audio...'): | |
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) | |
# pad from right side | |
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]):] | |
x_in = x_in[:, :256] | |
x_in = F.pad( | |
x_in, | |
(0, 256 - x_in.shape[-1]), | |
"constant", | |
COARSE_SEMANTIC_PAD_TOKEN, | |
) | |
x_in = torch.hstack( | |
[ | |
x_in, | |
torch.tensor([COARSE_INFER_TOKEN])[None].to(device), | |
x_coarse_in[:, -max_coarse_history:], | |
] | |
) | |
kv_cache = None | |
for _ in range(sliding_window_len): | |
if n_step >= n_steps: | |
continue | |
is_major_step = n_step % N_COARSE_CODEBOOKS == 0 | |
if use_kv_caching and kv_cache is not None: | |
x_input = x_in[:, [-1]] | |
else: | |
x_input = x_in | |
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) | |
logit_start_idx = ( | |
SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE | |
) | |
logit_end_idx = ( | |
SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE | |
) | |
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] | |
if top_p is not None: | |
# faster to convert to numpy | |
logits_device = relevant_logits.device | |
logits_dtype = relevant_logits.type() | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
item_next = torch.multinomial(probs, num_samples=1) | |
probs = probs.to(inf_device) | |
item_next = item_next.to(inf_device) | |
item_next += logit_start_idx | |
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) | |
x_in = torch.cat((x_in, item_next[None]), dim=1) | |
del logits, relevant_logits, probs, item_next | |
n_step += 1 | |
del x_in | |
del x_semantic_in | |
if settings.get('bark_offload_cpu'): | |
model.to("cpu") | |
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history):] | |
del x_coarse_in | |
assert len(gen_coarse_arr) == n_steps | |
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE | |
for n in range(1, N_COARSE_CODEBOOKS): | |
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE | |
o._clear_cuda_cache() | |
return gen_coarse_audio_arr | |
def generate_fine_new( | |
x_coarse_gen, | |
history_prompt: Union[str, dict] = None, | |
temp=0.5, | |
silent=False, | |
progress=gradio.Progress() | |
): | |
"""Generate full audio codes from coarse audio codes.""" | |
assert ( | |
isinstance(x_coarse_gen, np.ndarray) | |
and len(x_coarse_gen.shape) == 2 | |
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1 | |
and x_coarse_gen.shape[1] > 0 | |
and x_coarse_gen.min() >= 0 | |
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1 | |
) | |
if history_prompt is not None: | |
skip = False | |
if isinstance(history_prompt, dict): | |
x_fine_history = history_prompt['fine_prompt'] | |
elif history_prompt.endswith(".npz"): | |
x_fine_history = np.load(history_prompt)["fine_prompt"] | |
else: | |
if history_prompt in ALLOWED_PROMPTS: | |
x_fine_history = np.load( | |
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") | |
)["fine_prompt"] | |
else: | |
filename = f'data/bark_custom_speakers/{history_prompt}.npz' | |
if os.path.isfile(filename): | |
x_fine_history = np.load( | |
filename | |
)["fine_prompt"] | |
else: | |
skip = True | |
if not skip: | |
assert ( | |
isinstance(x_fine_history, np.ndarray) | |
and len(x_fine_history.shape) == 2 | |
and x_fine_history.shape[0] == N_FINE_CODEBOOKS | |
and x_fine_history.shape[1] >= 0 | |
and x_fine_history.min() >= 0 | |
and x_fine_history.max() <= CODEBOOK_SIZE - 1 | |
) | |
else: | |
x_fine_history = None | |
n_coarse = x_coarse_gen.shape[0] | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "fine" not in models: | |
preload_models_new() | |
model = models["fine"] | |
if settings.get('bark_offload_cpu'): | |
model.to(models_devices["fine"]) | |
device = next(model.parameters()).device | |
# make input arr | |
in_arr = np.vstack( | |
[ | |
x_coarse_gen, | |
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) | |
+ CODEBOOK_SIZE, # padding | |
] | |
).astype(np.int32) | |
# prepend history if available (max 512) | |
if x_fine_history is not None: | |
x_fine_history = x_fine_history.astype(np.int32) | |
in_arr = np.hstack( | |
[ | |
x_fine_history[:, -512:].astype(np.int32), | |
in_arr, | |
] | |
) | |
n_history = x_fine_history[:, -512:].shape[1] | |
else: | |
n_history = 0 | |
n_remove_from_end = 0 | |
# need to pad if too short (since non-causal model) | |
if in_arr.shape[1] < 1024: | |
n_remove_from_end = 1024 - in_arr.shape[1] | |
in_arr = np.hstack( | |
[ | |
in_arr, | |
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE, | |
] | |
) | |
# we can be lazy about fractional loop and just keep overwriting codebooks | |
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 | |
with o._inference_mode(): | |
in_arr = torch.tensor(in_arr.T).to(device) | |
for n in tqdm.tqdm(range(n_loops), disable=silent, desc='Generating fine audio...'): | |
start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) | |
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) | |
rel_start_fill_idx = start_fill_idx - start_idx | |
in_buffer = in_arr[start_idx: start_idx + 1024, :][None] | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
logits = model(nn, in_buffer) | |
if temp is None: | |
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE] | |
codebook_preds = torch.argmax(relevant_logits, -1) | |
else: | |
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp | |
probs = F.softmax(relevant_logits, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
codebook_preds = torch.hstack( | |
[ | |
torch.multinomial(probs[nnn], num_samples=1).to(inf_device) | |
for nnn in range(rel_start_fill_idx, 1024) | |
] | |
) | |
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds | |
del logits, codebook_preds | |
# transfer over info into model_in and convert to numpy | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
in_arr[ | |
start_fill_idx: start_fill_idx + (1024 - rel_start_fill_idx), nn | |
] = in_buffer[0, rel_start_fill_idx:, nn] | |
del in_buffer | |
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T | |
del in_arr | |
if settings.get('bark_offload_cpu'): | |
model.to("cpu") | |
gen_fine_arr = gen_fine_arr[:, n_history:] | |
if n_remove_from_end > 0: | |
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] | |
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] | |
o._clear_cuda_cache() | |
return gen_fine_arr | |
def codec_decode_new(fine_tokens, decode_on_cpu=False): | |
"""Turn quantized audio codes into audio array using encodec.""" | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "codec" not in models: | |
preload_models_new() | |
model = models["codec"] | |
if settings.get('bark_offload_cpu') and not decode_on_cpu: | |
model.to(models_devices["codec"]) | |
elif decode_on_cpu: | |
model.to('cpu') | |
device = next(model.parameters()).device | |
arr = torch.from_numpy(fine_tokens)[None] | |
arr = arr.to(device) | |
arr = arr.transpose(0, 1) | |
emb = model.quantizer.decode(arr) | |
out = model.decoder(emb) | |
audio_arr = out.detach().cpu().numpy().squeeze() | |
del arr, emb, out | |
if settings.get('bark_offload_cpu') and not decode_on_cpu: | |
model.to("cpu") | |
elif decode_on_cpu: | |
model.to('cpu' if settings.get('bark_use_cpu') else 'cuda') | |
return audio_arr | |
def _load_model(ckpt_path, device, use_small=False, model_type="text"): | |
if model_type == "text": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "coarse": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "fine": | |
ConfigClass = FineGPTConfig | |
ModelClass = FineGPT | |
else: | |
raise NotImplementedError() | |
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type | |
model_info = REMOTE_MODEL_PATHS[model_key] | |
if not os.path.exists(ckpt_path): | |
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.") | |
o._download(model_info["repo_id"], model_info["file_name"]) | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
# this is a hack | |
model_args = checkpoint["model_args"] | |
if "input_vocab_size" not in model_args: | |
model_args["input_vocab_size"] = model_args["vocab_size"] | |
model_args["output_vocab_size"] = model_args["vocab_size"] | |
del model_args["vocab_size"] | |
gptconf = ConfigClass(**checkpoint["model_args"]) | |
model = ModelClass(gptconf) | |
if settings.get('bark_half'): | |
model = model.half() | |
state_dict = checkpoint["model"] | |
# fixup checkpoint | |
unwanted_prefix = "_orig_mod." | |
for k, v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) | |
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) | |
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")]) | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")]) | |
if len(extra_keys) != 0: | |
raise ValueError(f"extra keys found: {extra_keys}") | |
if len(missing_keys) != 0: | |
raise ValueError(f"missing keys: {missing_keys}") | |
model.load_state_dict(state_dict, strict=False) | |
n_params = model.get_num_params() | |
val_loss = checkpoint["best_val_loss"].item() | |
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") | |
model.eval() | |
model.to(device) | |
del checkpoint, state_dict | |
o._clear_cuda_cache() | |
if model_type == "text": | |
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased") | |
return { | |
"model": model, | |
"tokenizer": tokenizer, | |
} | |
return model | |
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"): | |
if model_type not in ("text", "coarse", "fine"): | |
raise NotImplementedError() | |
if settings.get('bark_models_mix'): | |
use_small = not settings.get('bark_models_mix')[model_type]['large'] | |
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small) | |
global models | |
global models_devices | |
device = o._grab_best_device(use_gpu=use_gpu) | |
model_key = f"{model_type}" | |
if settings.get('bark_offload_cpu'): | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
ckpt_path = o._get_ckpt_path(model_type, use_small=use_small) | |
clean_models(model_key=model_key) | |
model = _load_model_f(ckpt_path, device) | |
models[model_key] = model | |
if model_type == "text": | |
models[model_key]["model"].to(device) | |
else: | |
models[model_key].to(device) | |
return models[model_key] | |
def load_codec_model(use_gpu=True, force_reload=False): | |
global models | |
global models_devices | |
device = o._grab_best_device(use_gpu=use_gpu) | |
if device == "mps": | |
# encodec doesn't support mps | |
device = "cpu" | |
model_key = "codec" | |
if settings.get('bark_offload_cpu'): | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
clean_models(model_key=model_key) | |
model = o._load_codec_model(device) | |
models[model_key] = model | |
models[model_key].to(device) | |
return models[model_key] | |
def preload_models_new( | |
text_use_gpu=True, | |
text_use_small=False, | |
coarse_use_gpu=True, | |
coarse_use_small=False, | |
fine_use_gpu=True, | |
fine_use_small=False, | |
codec_use_gpu=True, | |
force_reload=False, | |
progress=gradio.Progress() | |
): | |
"""Load all the necessary models for the pipeline.""" | |
if o._grab_best_device() == "cpu" and ( | |
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu | |
): | |
logger.warning("No GPU being used. Careful, inference might be very slow!") | |
_ = load_model( | |
model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload | |
) | |
progress((1, 4), desc='Loaded text...') | |
_ = load_model( | |
model_type="coarse", | |
use_gpu=coarse_use_gpu, | |
use_small=coarse_use_small, | |
force_reload=force_reload, | |
) | |
progress((2, 4), desc='Loaded coarse...') | |
_ = load_model( | |
model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload | |
) | |
progress((3, 4), desc='Loaded fine...') | |
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload) | |
progress((4, 4), desc='Loaded encodec...') | |