Spaces:
No application file
No application file
import gc | |
import os.path | |
import tempfile | |
import gradio | |
import numpy | |
import numpy as np | |
import requests | |
import scipy.io.wavfile | |
import torch.cuda | |
# from TTS.api import TTS | |
# from TTS.utils.manage import ModelManager | |
import webui.modules.models as mod | |
from webui.modules.implementations.patches.bark_custom_voices import wav_to_semantics, generate_fine_from_wav, \ | |
generate_course_history | |
from webui.ui.tabs import settings | |
hubert_models_cache = None | |
class BarkTTS(mod.TTSModelLoader): | |
no_install = True | |
def get_voices(): | |
found_prompts = [] | |
base_path = 'data/bark_custom_speakers/' | |
for path, subdirs, files in os.walk(base_path): | |
for name in files: | |
if name.endswith('.npz'): | |
found_prompts.append(os.path.join(path, name)[len(base_path):-4]) | |
from webui.modules.implementations.patches.bark_generation import ALLOWED_PROMPTS | |
return ['None'] + found_prompts + ALLOWED_PROMPTS | |
def create_voice(file, clone_model): | |
clone_model_obj = [model for model in hubert_models_cache if model['name'].casefold() == clone_model.casefold()][0] | |
file_name = '.'.join(file.replace('\\', '/').split('/')[-1].split('.')[:-1]) | |
out_file = f'data/bark_custom_speakers/{file_name}.npz' | |
semantic_prompt = wav_to_semantics(file, clone_model_obj) | |
fine_prompt = generate_fine_from_wav(file) | |
coarse_prompt = generate_course_history(fine_prompt) | |
np.savez(out_file, | |
semantic_prompt=semantic_prompt, | |
fine_prompt=fine_prompt, | |
coarse_prompt=coarse_prompt | |
) | |
return file_name | |
def get_cloning_models(): | |
global hubert_models_cache | |
if hubert_models_cache: | |
return hubert_models_cache | |
try: | |
r = requests.get('https://raw.githubusercontent.com/gitmylo/Voice-cloning-quantizers/main/models.json') | |
hubert_models_cache = r.json() | |
except: # No internet connection or something similar | |
hubert_models_cache = [ | |
{ | |
"name": "Base English", | |
"repo": "GitMylo/bark-voice-cloning", | |
"file": "quantifier_hubert_base_ls960_14.pth", | |
"language": "ENG", | |
"author": "https://github.com/gitmylo/", | |
"quant_version": 0, | |
"official": True, | |
"dlfilename": "tokenizer.pth", | |
"extra": { | |
"dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training" | |
} | |
}, | |
{ | |
"name": "Large English", | |
"repo": "GitMylo/bark-voice-cloning", | |
"file": "quantifier_V1_hubert_base_ls960_23.pth", | |
"language": "ENG", | |
"author": "https://github.com/gitmylo/", | |
"quant_version": 1, | |
"official": True, | |
"dlfilename": "tokenizer_large.pth", | |
"extra": { | |
"dataset": "https://huggingface.co/datasets/GitMylo/bark-semantic-training" | |
} | |
} | |
] | |
return hubert_models_cache | |
def _components(self, **quick_kwargs): | |
def update_speaker(option): | |
if option == 'File': | |
speaker.hide = False | |
refresh_speakers.hide = False | |
speaker_file.hide = True | |
speaker_name.hide = True | |
clone_model.hide = True | |
npz_file.hide = True | |
speakers.hide = False | |
return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False)] | |
elif option == 'Clone': | |
speaker.hide = True | |
refresh_speakers.hide = True | |
speaker_file.hide = True | |
speaker_name.hide = False | |
clone_model.hide = False | |
npz_file.hide = True | |
speakers.hide = True | |
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)] | |
elif option == 'Upload .npz': | |
speaker.hide = True | |
refresh_speakers.hide = True | |
speaker_file.hide = True | |
speaker_name.hide = True | |
clone_model.hide = True | |
npz_file.hide = False | |
speakers.hide = True | |
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=False), | |
gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)] | |
def update_input(option): | |
if option == 'Text': | |
textbox.hide = False | |
split_type.hide = False | |
audio_upload.hide = True | |
return [gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True)] | |
else: | |
textbox.hide = True | |
split_type.hide = True | |
audio_upload.hide = False | |
return [gradio.update(visible=False), gradio.update(visible=False), gradio.update(visible=True), gradio.update(visible=True), gradio.update(visible=False)] | |
def update_voices(): | |
return gradio.update(choices=self.get_voices()) | |
clone_models = [m['name'] for m in self.get_cloning_models()] | |
input_type = gradio.Radio(['Text', 'Audio'], label='Input type', value='Text', **quick_kwargs) | |
textbox = gradio.Textbox(lines=7, label='Input', placeholder='Text to speak goes here', info='For manual splitting, use enter. Otherwise, don\'t worry about it', **quick_kwargs) | |
split_type = gradio.Dropdown(['Manual', 'Strict short', 'Strict long', 'Non-strict short', 'Non-strict long'], value='Strict long', label='Splitting type', **quick_kwargs) | |
gen_prefix = gradio.Textbox(label='Generation prefix', info='Add this text before every generated chunk, better for keeping emotions.', **quick_kwargs) | |
input_lang_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Speech recognition bark quantizer.', info='The "voice cloning" model to use. Mainly for languages.', **quick_kwargs) | |
audio_upload = gradio.File(label='Words to speak', file_types=['audio'], **quick_kwargs) | |
input_lang_model.hide = True | |
audio_upload.hide = True | |
# with gradio.Row(visible=False) as temps: | |
text_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Text temperature', info='Affects the randomness of the generated speech patterns, like with Language models, higher is more random', **quick_kwargs) | |
waveform_temp = gradio.Slider(0.05, 1.5, 0.7, step=0.05, label='Waveform temperature', info='Affects the randomness of the audio generated from the previous generated speech patterns, like with Language models, higher is more random', **quick_kwargs) | |
with gradio.Accordion(label='Voice cloning guide and long form generations', open=False, visible=False) as a: | |
clone_guide = gradio.Markdown(''' | |
## Long form generations | |
Split your long form generations with newlines (enter), every line will be generated individually, but as a continuation of the last. | |
Empty lines at the start and end will be skipped. | |
## When cloning a voice: | |
* The speaker will be saved in the data/bark_custom_speakers directory. | |
* The "file" output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning. | |
## Cloning guide (short edition) | |
* Clear spoken, no noise, no music. | |
* Ends after a short pause for best results. | |
* The speaker will be saved in the data/bark_custom_speakers directory. | |
* The βfileβ output contains a different speaker. This is for saving speakers created through random generation. Or continued cloning. | |
''', visible=False) | |
mode = gradio.Radio(['File', 'Clone', 'Upload .npz'], label='Speaker from', value='File', **quick_kwargs) | |
with gradio.Row(visible=False) as speakers: | |
speaker = gradio.Dropdown(self.get_voices(), value='None', show_label=False, **quick_kwargs) | |
refresh_speakers = gradio.Button('π', variant='tool secondary', **quick_kwargs) | |
refresh_speakers.click(fn=update_voices, outputs=speaker) | |
clone_model = gradio.Dropdown(clone_models, value=clone_models[0], label='Voice cloning model.', info='The voice cloning model to use. Mainly for languages.', **quick_kwargs) | |
speaker_name = gradio.Textbox(label='Speaker name', info='The name to save the speaker as, random if empty', **quick_kwargs) | |
speaker_file = gradio.Audio(label='Speaker', **quick_kwargs) | |
clone_model.hide = True | |
speaker_name.hide = True | |
speaker_file.hide = True # Custom, auto hide speaker_file | |
npz_file = gradio.File(label='Npz file', file_types=['.npz'], **quick_kwargs) | |
npz_file.hide = True | |
keep_generating = gradio.Checkbox(label='Keep it up (keep generating)', value=False, **quick_kwargs) | |
min_eos_p = gradio.Slider(0.05, 1, 0.2, step=0.05, label='min end of audio probability', info='Lower values cause the generation to stop sooner, higher values make it do more, 1 is about the same as keep generating being on.', **quick_kwargs) | |
mode.change(fn=update_speaker, inputs=mode, outputs=[speakers, speaker, refresh_speakers, speaker_file, speaker_name, clone_model, npz_file]) | |
input_type.change(fn=update_input, inputs=input_type, outputs=[textbox, split_type, audio_upload, input_lang_model, gen_prefix]) | |
return [textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp, | |
speaker, speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, speakers, min_eos_p, a, clone_model, input_lang_model, | |
npz_file, split_type] | |
model = 'suno/bark' | |
def get_response(self, *inputs, progress=gradio.Progress()): | |
textbox, gen_prefix, audio_upload, input_type, mode, text_temp, waveform_temp, speaker,\ | |
speaker_name, speaker_file, refresh_speakers, keep_generating, clone_guide, min_eos_p, clone_model,\ | |
input_lang_model, npz_file, split_type = inputs | |
_speaker = None | |
if mode == 'File': | |
_speaker = speaker if speaker != 'None' else None | |
elif mode == 'Clone': | |
speaker_sr, speaker_wav = speaker_file | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav') | |
if speaker_name: | |
temp_file.name = os.path.join(os.path.dirname(temp_file.name), speaker_name + '.wav') | |
scipy.io.wavfile.write(temp_file.name, speaker_sr, speaker_wav) | |
_speaker = self.create_voice(temp_file.name, clone_model) | |
elif mode == 'Upload .npz': | |
_speaker = npz_file.name | |
from webui.modules.implementations.patches.bark_api import generate_audio_new, semantic_to_waveform_new | |
from bark.generation import SAMPLE_RATE | |
if input_type == 'Text': | |
history_prompt, audio = generate_audio_new(textbox, _speaker, text_temp, waveform_temp, output_full=True, | |
allow_early_stop=not keep_generating, min_eos_p=min_eos_p, | |
gen_prefix=gen_prefix, progress=progress, split_type=split_type) | |
else: | |
input_lang_model_obj = \ | |
[model for model in hubert_models_cache if model['name'].casefold() == input_lang_model.casefold()][0] | |
semantics = wav_to_semantics(audio_upload.name, input_lang_model_obj).numpy() | |
history_prompt, audio = semantic_to_waveform_new(semantics, _speaker, waveform_temp, output_full=True, | |
progress=progress) | |
temp = tempfile.NamedTemporaryFile(delete=False) | |
temp.name = temp.name.replace(temp.name.replace('\\', '/').split('/')[-1], 'speaker.npz') | |
numpy.savez(temp.name, **history_prompt) | |
return (SAMPLE_RATE, audio), temp.name | |
def unload_model(self): | |
# from bark.generation import clean_models | |
# clean_models() | |
import bark.generation as bark_gen | |
model_keys = list(bark_gen.models.keys()) | |
for k in model_keys: | |
if k in bark_gen.models: | |
del bark_gen.models[k] | |
bark_gen._clear_cuda_cache() | |
gc.collect() | |
def load_model(self, progress=gradio.Progress()): | |
from webui.modules.implementations.patches.bark_generation import preload_models_new | |
gpu = not settings.get('bark_use_cpu') | |
preload_models_new( | |
text_use_gpu=gpu, | |
fine_use_gpu=gpu, | |
coarse_use_gpu=gpu, | |
codec_use_gpu=gpu, | |
progress=progress | |
) | |
# class CoquiTTS(mod.TTSModelLoader): | |
# no_install = True | |
# model = 'Coqui TTS' | |
# | |
# current_model: TTS = None | |
# current_model_name: str = None | |
# | |
# def load_model(self, progress=gradio.Progress()): | |
# pass | |
# | |
# def unload_model(self): | |
# self.current_model_name = None | |
# self.current_model = None | |
# gc.collect() | |
# torch.cuda.empty_cache() | |
# | |
# def tts_speakers(self): | |
# if self.current_model is None: | |
# return gradio.update(choices=[]), gradio.update(choices=[]) | |
# speakers = list( | |
# dict.fromkeys([speaker.strip() for speaker in self.current_model.speakers])) if self.current_model.is_multi_speaker else [] | |
# languages = list(dict.fromkeys(self.current_model.languages)) if self.current_model.is_multi_lingual else [] | |
# return gradio.update(choices=speakers), gradio.update(choices=languages) | |
# | |
# def _components(self, **quick_kwargs): | |
# with gradio.Row(visible=False) as r1: | |
# selected_tts = gradio.Dropdown(ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False).list_tts_models(), label='TTS model', info='The TTS model to use for text-to-speech', | |
# allow_custom_value=True, **quick_kwargs) | |
# selected_tts_unload = gradio.Button('π£', variant='primary tool offset--10', **quick_kwargs) | |
# | |
# with gradio.Row(visible=False) as r2: | |
# speaker_tts = gradio.Dropdown(self.tts_speakers()[0]['choices'], label='TTS speaker', | |
# info='The speaker to use for the TTS model, only for multi speaker models.', **quick_kwargs) | |
# speaker_tts_refresh = gradio.Button('π', variant='primary tool offset--10', **quick_kwargs) | |
# | |
# with gradio.Row(visible=False) as r3: | |
# lang_tts = gradio.Dropdown(self.tts_speakers()[1]['choices'], label='TTS language', | |
# info='The language to use for the TTS model, only for multilingual models.', **quick_kwargs) | |
# lang_tts_refresh = gradio.Button('π', variant='primary tool offset--10', **quick_kwargs) | |
# | |
# speaker_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts]) | |
# lang_tts_refresh.click(fn=self.tts_speakers, outputs=[speaker_tts, lang_tts]) | |
# | |
# def load_tts(model): | |
# if self.current_model_name != model: | |
# unload_tts() | |
# self.current_model_name = model | |
# self.current_model = TTS(model, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False) | |
# return gradio.update(value=model), *self.tts_speakers() | |
# | |
# def unload_tts(): | |
# if self.current_model is not None: | |
# self.current_model = None | |
# self.current_model_name = None | |
# gc.collect() | |
# torch.cuda.empty_cache() | |
# return gradio.update(value=''), *self.tts_speakers() | |
# | |
# selected_tts_unload.click(fn=unload_tts, outputs=[selected_tts, speaker_tts, lang_tts]) | |
# selected_tts.select(fn=load_tts, inputs=selected_tts, outputs=[selected_tts, speaker_tts, lang_tts]) | |
# | |
# text_input = gradio.TextArea(label='Text to speech text', | |
# info='Text to speech text if no audio file is used as input.', **quick_kwargs) | |
# | |
# return selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input, r1, r2, r3 | |
# | |
# | |
# | |
# def get_response(self, *inputs, progress=gradio.Progress()): | |
# selected_tts, selected_tts_unload, speaker_tts, speaker_tts_refresh, lang_tts, lang_tts_refresh, text_input = inputs | |
# if self.current_model_name != selected_tts: | |
# if self.current_model is not None: | |
# self.current_model = None | |
# self.current_model_name = None | |
# gc.collect() | |
# torch.cuda.empty_cache() | |
# self.current_model_name = selected_tts | |
# self.current_model = TTS(selected_tts, gpu=True if torch.cuda.is_available() and settings.get('tts_use_gpu') else False) | |
# audio = np.array(self.current_model.tts(text_input, speaker_tts if self.current_model.is_multi_speaker else None, lang_tts if self.current_model.is_multi_lingual else None)) | |
# audio_tuple = (self.current_model.synthesizer.output_sample_rate, audio) | |
# return audio_tuple, None | |
elements = [] | |
def init_elements(): | |
global elements | |
import webui.extensionlib.callbacks as cb | |
extension_elements = [] | |
for el in cb.get_manager('webui.tts.list')(): | |
if isinstance(el, mod.TTSModelLoader): | |
extension_elements.append(el) | |
elif isinstance(el, list): | |
extension_elements += el | |
extension_elements = [e for e in extension_elements if isinstance(e, mod.TTSModelLoader)] # Cleanup | |
elements = [BarkTTS()] + extension_elements | |
def all_tts() -> list[mod.TTSModelLoader]: | |
if not elements: | |
init_elements() | |
return elements | |
def all_elements(in_dict): | |
l = [] | |
for value in in_dict.values(): | |
l += value | |
return l | |
def all_elements_dict(): | |
d = {} | |
for tts in all_tts(): | |
d[tts.model] = tts.gradio_components() | |
return d | |