import torch import torchaudio from bark.generation import SAMPLE_RATE, load_codec_model from hubert.customtokenizer import CustomTokenizer from hubert.hubert_manager import HuBERTManager from hubert.pre_kmeans_hubert import CustomHubert from webui.modules.implementations.patches.bark_generation import generate_text_semantic_new, generate_coarse_new, generate_fine_new from encodec.utils import convert_audio from webui.ui.tabs import settings def generate_semantic_fine(transcript='There actually isn\'t a way to do that. It\'s impossible. Please don\'t even bother.'): """ Creates a speech file with semantics and fine audio :param transcript: The transcript. :return: tuple with (semantic, fine) """ semantic = generate_text_semantic_new(transcript) # We need speech patterns coarse = generate_coarse_new(semantic) # Voice doesn't matter fine = generate_fine_new(coarse) # Good audio, ready for what comes next return semantic, fine huberts = {} def load_hubert(clone_model): global huberts hubert_path = HuBERTManager.make_sure_hubert_installed() # model = ('quantifier_V1_hubert_base_ls960_23.pth', 'tokenizer_large.pth') if args.bark_cloning_large_model else ('quantifier_hubert_base_ls960_14.pth', 'tokenizer.pth') tokenizer_path = HuBERTManager.make_sure_tokenizer_installed(model=clone_model['file'], local_file=clone_model['dlfilename'], repo=clone_model['repo']) if 'hubert' not in huberts: print('Loading HuBERT') huberts['hubert'] = CustomHubert(hubert_path) if 'tokenizer' not in huberts or ('tokenizer_name' in huberts and huberts['tokenizer_name'] != clone_model['name'].casefold()): print('Loading Custom Tokenizer') tokenizer = CustomTokenizer.load_from_checkpoint(tokenizer_path, map_location=torch.device('cpu')) huberts['tokenizer'] = tokenizer huberts['tokenizer_name'] = clone_model['name'].casefold() def wav_to_semantics(file, clone_model) -> torch.Tensor: # Vocab size is 10,000. load_hubert(clone_model) wav, sr = torchaudio.load(file) # sr, wav = wavfile.read(file) # wav = torch.tensor(wav, dtype=torch.float32) if wav.shape[0] == 2: # Stereo to mono if needed wav = wav.mean(0, keepdim=True) if wav.shape[1] == 2: wav = wav.mean(1, keepdim=False).unsqueeze(-1) # Extract semantics in HuBERT style print('Extracting semantics') semantics = huberts['hubert'].forward(wav, input_sample_hz=sr) print('Tokenizing semantics') tokens = huberts['tokenizer'].get_token(semantics) return tokens def eval_semantics(code): """ BE CAREFUL, this will execute :code: :param code: The code to evaluate, out local will be used for the output. :return: The created numpy array. """ _locals = locals() exec(code, globals(), _locals) return _locals['out'] def generate_course_history(fine_history): return fine_history[:2, :] def generate_fine_from_wav(file): model = load_codec_model(use_gpu=not settings.get('bark_use_cpu')) # Don't worry about reimporting, it stores the loaded model in a dict wav, sr = torchaudio.load(file) wav = convert_audio(wav, sr, SAMPLE_RATE, model.channels) wav = wav.unsqueeze(0) if not settings.get('bark_use_cpu'): wav = wav.to('cuda') with torch.no_grad(): encoded_frames = model.encode(wav) codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() codes = codes.cpu().numpy() return codes