from typing import Union import bark.generation as o import gradio from bark.generation import * from webui.ui.tabs import settings SUPPORTED_LANGS = [ ("English", "en"), ("German", "de"), ("Spanish", "es"), ("French", "fr"), ("Hindi", "hi"), ("Italian", "it"), ("Japanese", "ja"), ("Korean", "ko"), ("Polish", "pl"), ("Portuguese", "pt"), ("Russian", "ru"), ("Turkish", "tr"), ("Chinese", "zh"), ] ALLOWED_PROMPTS = ["announcer"] for _, lang in SUPPORTED_LANGS: for prefix in ("", f"v2{os.path.sep}"): for n in range(10): ALLOWED_PROMPTS.append(f"{prefix}{lang}_speaker_{n}") for n in range(10): ALLOWED_PROMPTS.append(f"speaker_{n}") def generate_text_semantic_new( text, history_prompt: Union[str, dict] = None, temp=0.7, top_k=None, top_p=None, silent=False, min_eos_p=0.2, max_gen_duration_s=None, allow_early_stop=True, use_kv_caching=False, progress=gradio.Progress() ): """Generate semantic tokens from text.""" assert isinstance(text, str) text = o._normalize_whitespace(text) # assert len(text.strip()) > 0 if history_prompt is not None: skip = False if isinstance(history_prompt, dict): semantic_history = history_prompt['semantic_prompt'] elif history_prompt.endswith(".npz"): semantic_history = np.load(history_prompt)["semantic_prompt"] else: if history_prompt in ALLOWED_PROMPTS: semantic_history = np.load( os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") )["semantic_prompt"] else: filename = f'data/bark_custom_speakers/{history_prompt}.npz' if os.path.isfile(filename): semantic_history = np.load( filename )["semantic_prompt"] else: skip = True if not skip: assert ( isinstance(semantic_history, np.ndarray) and len(semantic_history.shape) == 1 and len(semantic_history) > 0 and semantic_history.min() >= 0 and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 ) else: semantic_history = None else: semantic_history = None # load models if not yet exist global models global models_devices if "text" not in models: preload_models_new() model_container = models["text"] model = model_container["model"] tokenizer = model_container["tokenizer"] encoded_text = np.array(o._tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET if settings.get('bark_offload_cpu'): model.to(models_devices["text"]) device = next(model.parameters()).device if len(encoded_text) > 256: p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) logger.warning(f"warning, text too long, lopping of last {p}%") encoded_text = encoded_text[:256] encoded_text = np.pad( encoded_text, (0, 256 - len(encoded_text)), constant_values=TEXT_PAD_TOKEN, mode="constant", ) if semantic_history is not None: semantic_history = semantic_history.astype(np.int64) # lop off if history is too long, pad if needed semantic_history = semantic_history[-256:] semantic_history = np.pad( semantic_history, (0, 256 - len(semantic_history)), constant_values=SEMANTIC_PAD_TOKEN, mode="constant", ) else: semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) x = torch.from_numpy( np.hstack([ encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN]) ]).astype(np.int64) )[None] assert x.shape[1] == 256 + 256 + 1 with o._inference_mode(): x = x.to(device) n_tot_steps = 768 # custom tqdm updates since we don't know when eos will occur # pbar = tqdm.tqdm(disable=silent, total=100, desc='Generating semantics...') pbar_state = 0 tot_generated_duration_s = 0 kv_cache = None for n in range(n_tot_steps): if use_kv_caching and kv_cache is not None: x_input = x[:, [-1]] else: x_input = x logits, kv_cache = model( x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache ) relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] if allow_early_stop: relevant_logits = torch.hstack( (relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos ) if top_p is not None: # faster to convert to numpy logits_device = relevant_logits.device logits_dtype = relevant_logits.type() relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() sorted_indices = np.argsort(relevant_logits)[::-1] sorted_logits = relevant_logits[sorted_indices] cumulative_probs = np.cumsum(softmax(sorted_logits)) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() sorted_indices_to_remove[0] = False relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf relevant_logits = torch.from_numpy(relevant_logits) relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) if top_k is not None: v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) relevant_logits[relevant_logits < v[-1]] = -float("Inf") probs = F.softmax(relevant_logits / temp, dim=-1) # multinomial bugged on mps: shuttle to cpu if necessary inf_device = probs.device if probs.device.type == "mps": probs = probs.to("cpu") item_next = torch.multinomial(probs, num_samples=1) probs = probs.to(inf_device) item_next = item_next.to(inf_device) if allow_early_stop and ( item_next == SEMANTIC_VOCAB_SIZE or (min_eos_p is not None and probs[-1] >= min_eos_p) ): # eos found, so break # pbar.update(100 - pbar_state) progress((pbar_state, 100), desc='Generating semantics...') break x = torch.cat((x, item_next[None]), dim=1) tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: # pbar.update(100 - pbar_state) progress((pbar_state, 100), desc='Generating semantics...') break if n == n_tot_steps - 1: # pbar.update(100 - pbar_state) progress((pbar_state, 100), desc='Generating semantics...') break del logits, relevant_logits, probs, item_next req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))]) if req_pbar_state > pbar_state: # pbar.update(req_pbar_state - pbar_state) progress((pbar_state, req_pbar_state), desc='Generating semantics...') pbar_state = req_pbar_state # pbar.close() out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1:] if settings.get('bark_offload_cpu'): model.to("cpu") assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) o._clear_cuda_cache() return out def generate_coarse_new( x_semantic, history_prompt: Union[str, dict] = None, temp=0.7, top_k=None, top_p=None, silent=False, max_coarse_history=630, # min 60 (faster), max 630 (more context) sliding_window_len=60, use_kv_caching=False, progress=gradio.Progress() ): """Generate coarse audio codes from semantic tokens.""" assert ( isinstance(x_semantic, np.ndarray) and len(x_semantic.shape) == 1 and len(x_semantic) > 0 and x_semantic.min() >= 0 and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 ) assert 60 <= max_coarse_history <= 630 assert max_coarse_history + sliding_window_len <= 1024 - 256 semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) if history_prompt is not None: skip = False if isinstance(history_prompt, dict): x_history = history_prompt elif history_prompt.endswith(".npz"): x_history = np.load(history_prompt) else: if history_prompt in ALLOWED_PROMPTS: x_history = np.load( os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") ) else: filename = f'data/bark_custom_speakers/{history_prompt}.npz' if os.path.isfile(filename): x_history = np.load( filename ) else: skip = True if not skip: x_semantic_history = x_history["semantic_prompt"] x_coarse_history = x_history["coarse_prompt"] assert ( isinstance(x_semantic_history, np.ndarray) and len(x_semantic_history.shape) == 1 and len(x_semantic_history) > 0 and x_semantic_history.min() >= 0 and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 and isinstance(x_coarse_history, np.ndarray) and len(x_coarse_history.shape) == 2 and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS and x_coarse_history.shape[-1] >= 0 and x_coarse_history.min() >= 0 and x_coarse_history.max() <= CODEBOOK_SIZE - 1 # and ( # round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) # == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) # ) ) x_coarse_history = o._flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE # trim histories correctly n_semantic_hist_provided = np.min( [ max_semantic_history, len(x_semantic_history) - len(x_semantic_history) % 2, int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), ] ) n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) # TODO: bit of a hack for time alignment (sounds better) x_coarse_history = x_coarse_history[:-2] else: x_semantic_history = np.array([], dtype=np.int32) x_coarse_history = np.array([], dtype=np.int32) # load models if not yet exist global models global models_devices if "coarse" not in models: preload_models_new() model = models["coarse"] if settings.get('bark_offload_cpu'): model.to(models_devices["coarse"]) device = next(model.parameters()).device # start loop n_steps = int( round( np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) * N_COARSE_CODEBOOKS ) ) assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) x_coarse = x_coarse_history.astype(np.int32) base_semantic_idx = len(x_semantic_history) with o._inference_mode(): x_semantic_in = torch.from_numpy(x_semantic)[None].to(device) x_coarse_in = torch.from_numpy(x_coarse)[None].to(device) n_window_steps = int(np.ceil(n_steps / sliding_window_len)) n_step = 0 for curr_step in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent, desc='Generating coarse audio...'): semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) # pad from right side x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]):] x_in = x_in[:, :256] x_in = F.pad( x_in, (0, 256 - x_in.shape[-1]), "constant", COARSE_SEMANTIC_PAD_TOKEN, ) x_in = torch.hstack( [ x_in, torch.tensor([COARSE_INFER_TOKEN])[None].to(device), x_coarse_in[:, -max_coarse_history:], ] ) kv_cache = None for _ in range(sliding_window_len): if n_step >= n_steps: continue is_major_step = n_step % N_COARSE_CODEBOOKS == 0 if use_kv_caching and kv_cache is not None: x_input = x_in[:, [-1]] else: x_input = x_in logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) logit_start_idx = ( SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE ) logit_end_idx = ( SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE ) relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] if top_p is not None: # faster to convert to numpy logits_device = relevant_logits.device logits_dtype = relevant_logits.type() relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() sorted_indices = np.argsort(relevant_logits)[::-1] sorted_logits = relevant_logits[sorted_indices] cumulative_probs = np.cumsum(softmax(sorted_logits)) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() sorted_indices_to_remove[0] = False relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf relevant_logits = torch.from_numpy(relevant_logits) relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) if top_k is not None: v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) relevant_logits[relevant_logits < v[-1]] = -float("Inf") probs = F.softmax(relevant_logits / temp, dim=-1) # multinomial bugged on mps: shuttle to cpu if necessary inf_device = probs.device if probs.device.type == "mps": probs = probs.to("cpu") item_next = torch.multinomial(probs, num_samples=1) probs = probs.to(inf_device) item_next = item_next.to(inf_device) item_next += logit_start_idx x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) x_in = torch.cat((x_in, item_next[None]), dim=1) del logits, relevant_logits, probs, item_next n_step += 1 del x_in del x_semantic_in if settings.get('bark_offload_cpu'): model.to("cpu") gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history):] del x_coarse_in assert len(gen_coarse_arr) == n_steps gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE for n in range(1, N_COARSE_CODEBOOKS): gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE o._clear_cuda_cache() return gen_coarse_audio_arr def generate_fine_new( x_coarse_gen, history_prompt: Union[str, dict] = None, temp=0.5, silent=False, progress=gradio.Progress() ): """Generate full audio codes from coarse audio codes.""" assert ( isinstance(x_coarse_gen, np.ndarray) and len(x_coarse_gen.shape) == 2 and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1 and x_coarse_gen.shape[1] > 0 and x_coarse_gen.min() >= 0 and x_coarse_gen.max() <= CODEBOOK_SIZE - 1 ) if history_prompt is not None: skip = False if isinstance(history_prompt, dict): x_fine_history = history_prompt['fine_prompt'] elif history_prompt.endswith(".npz"): x_fine_history = np.load(history_prompt)["fine_prompt"] else: if history_prompt in ALLOWED_PROMPTS: x_fine_history = np.load( os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt}.npz") )["fine_prompt"] else: filename = f'data/bark_custom_speakers/{history_prompt}.npz' if os.path.isfile(filename): x_fine_history = np.load( filename )["fine_prompt"] else: skip = True if not skip: assert ( isinstance(x_fine_history, np.ndarray) and len(x_fine_history.shape) == 2 and x_fine_history.shape[0] == N_FINE_CODEBOOKS and x_fine_history.shape[1] >= 0 and x_fine_history.min() >= 0 and x_fine_history.max() <= CODEBOOK_SIZE - 1 ) else: x_fine_history = None n_coarse = x_coarse_gen.shape[0] # load models if not yet exist global models global models_devices if "fine" not in models: preload_models_new() model = models["fine"] if settings.get('bark_offload_cpu'): model.to(models_devices["fine"]) device = next(model.parameters()).device # make input arr in_arr = np.vstack( [ x_coarse_gen, np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) + CODEBOOK_SIZE, # padding ] ).astype(np.int32) # prepend history if available (max 512) if x_fine_history is not None: x_fine_history = x_fine_history.astype(np.int32) in_arr = np.hstack( [ x_fine_history[:, -512:].astype(np.int32), in_arr, ] ) n_history = x_fine_history[:, -512:].shape[1] else: n_history = 0 n_remove_from_end = 0 # need to pad if too short (since non-causal model) if in_arr.shape[1] < 1024: n_remove_from_end = 1024 - in_arr.shape[1] in_arr = np.hstack( [ in_arr, np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE, ] ) # we can be lazy about fractional loop and just keep overwriting codebooks n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 with o._inference_mode(): in_arr = torch.tensor(in_arr.T).to(device) for n in tqdm.tqdm(range(n_loops), disable=silent, desc='Generating fine audio...'): start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) rel_start_fill_idx = start_fill_idx - start_idx in_buffer = in_arr[start_idx: start_idx + 1024, :][None] for nn in range(n_coarse, N_FINE_CODEBOOKS): logits = model(nn, in_buffer) if temp is None: relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE] codebook_preds = torch.argmax(relevant_logits, -1) else: relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp probs = F.softmax(relevant_logits, dim=-1) # multinomial bugged on mps: shuttle to cpu if necessary inf_device = probs.device if probs.device.type == "mps": probs = probs.to("cpu") codebook_preds = torch.hstack( [ torch.multinomial(probs[nnn], num_samples=1).to(inf_device) for nnn in range(rel_start_fill_idx, 1024) ] ) in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds del logits, codebook_preds # transfer over info into model_in and convert to numpy for nn in range(n_coarse, N_FINE_CODEBOOKS): in_arr[ start_fill_idx: start_fill_idx + (1024 - rel_start_fill_idx), nn ] = in_buffer[0, rel_start_fill_idx:, nn] del in_buffer gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T del in_arr if settings.get('bark_offload_cpu'): model.to("cpu") gen_fine_arr = gen_fine_arr[:, n_history:] if n_remove_from_end > 0: gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] o._clear_cuda_cache() return gen_fine_arr def codec_decode_new(fine_tokens, decode_on_cpu=False): """Turn quantized audio codes into audio array using encodec.""" # load models if not yet exist global models global models_devices if "codec" not in models: preload_models_new() model = models["codec"] if settings.get('bark_offload_cpu') and not decode_on_cpu: model.to(models_devices["codec"]) elif decode_on_cpu: model.to('cpu') device = next(model.parameters()).device arr = torch.from_numpy(fine_tokens)[None] arr = arr.to(device) arr = arr.transpose(0, 1) emb = model.quantizer.decode(arr) out = model.decoder(emb) audio_arr = out.detach().cpu().numpy().squeeze() del arr, emb, out if settings.get('bark_offload_cpu') and not decode_on_cpu: model.to("cpu") elif decode_on_cpu: model.to('cpu' if settings.get('bark_use_cpu') else 'cuda') return audio_arr def _load_model(ckpt_path, device, use_small=False, model_type="text"): if model_type == "text": ConfigClass = GPTConfig ModelClass = GPT elif model_type == "coarse": ConfigClass = GPTConfig ModelClass = GPT elif model_type == "fine": ConfigClass = FineGPTConfig ModelClass = FineGPT else: raise NotImplementedError() model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type model_info = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(ckpt_path): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.") o._download(model_info["repo_id"], model_info["file_name"]) checkpoint = torch.load(ckpt_path, map_location=device) # this is a hack model_args = checkpoint["model_args"] if "input_vocab_size" not in model_args: model_args["input_vocab_size"] = model_args["vocab_size"] model_args["output_vocab_size"] = model_args["vocab_size"] del model_args["vocab_size"] gptconf = ConfigClass(**checkpoint["model_args"]) model = ModelClass(gptconf) if settings.get('bark_half'): model = model.half() state_dict = checkpoint["model"] # fixup checkpoint unwanted_prefix = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")]) missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")]) if len(extra_keys) != 0: raise ValueError(f"extra keys found: {extra_keys}") if len(missing_keys) != 0: raise ValueError(f"missing keys: {missing_keys}") model.load_state_dict(state_dict, strict=False) n_params = model.get_num_params() val_loss = checkpoint["best_val_loss"].item() logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") model.eval() model.to(device) del checkpoint, state_dict o._clear_cuda_cache() if model_type == "text": tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased") return { "model": model, "tokenizer": tokenizer, } return model def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() if settings.get('bark_models_mix'): use_small = not settings.get('bark_models_mix')[model_type]['large'] _load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small) global models global models_devices device = o._grab_best_device(use_gpu=use_gpu) model_key = f"{model_type}" if settings.get('bark_offload_cpu'): models_devices[model_key] = device device = "cpu" if model_key not in models or force_reload: ckpt_path = o._get_ckpt_path(model_type, use_small=use_small) clean_models(model_key=model_key) model = _load_model_f(ckpt_path, device) models[model_key] = model if model_type == "text": models[model_key]["model"].to(device) else: models[model_key].to(device) return models[model_key] def load_codec_model(use_gpu=True, force_reload=False): global models global models_devices device = o._grab_best_device(use_gpu=use_gpu) if device == "mps": # encodec doesn't support mps device = "cpu" model_key = "codec" if settings.get('bark_offload_cpu'): models_devices[model_key] = device device = "cpu" if model_key not in models or force_reload: clean_models(model_key=model_key) model = o._load_codec_model(device) models[model_key] = model models[model_key].to(device) return models[model_key] def preload_models_new( text_use_gpu=True, text_use_small=False, coarse_use_gpu=True, coarse_use_small=False, fine_use_gpu=True, fine_use_small=False, codec_use_gpu=True, force_reload=False, progress=gradio.Progress() ): """Load all the necessary models for the pipeline.""" if o._grab_best_device() == "cpu" and ( text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu ): logger.warning("No GPU being used. Careful, inference might be very slow!") _ = load_model( model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload ) progress((1, 4), desc='Loaded text...') _ = load_model( model_type="coarse", use_gpu=coarse_use_gpu, use_small=coarse_use_small, force_reload=force_reload, ) progress((2, 4), desc='Loaded coarse...') _ = load_model( model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload ) progress((3, 4), desc='Loaded fine...') _ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload) progress((4, 4), desc='Loaded encodec...')