Upyaya's picture
Update app.py
f4c5a56
raw
history blame
2.57 kB
from transformers import Blip2ForConditionalGeneration
from transformers import Blip2Processor
from peft import PeftModel
import streamlit as st
from PIL import Image
#import torch
import os
preprocess_ckp = "Salesforce/blip2-opt-2.7b" #Checkpoint path used for perprocess image
base_model_ckp = "./model/blip2-opt-2.7b-fp16-sharded" #Base model checkpoint path
peft_model_ckp = "./model/blip2_peft" #PEFT model checkpoint path
sample_img_path = "./sample_images/"
#init_model_required = True
#processor = None
#model = None
#def init_model():
#if init_model_required:
#Preprocess input
processor = Blip2Processor.from_pretrained(preprocess_ckp)
#Model
#Inferance on GPU device. Will give error in CPU system, as "load_in_8bit" is an setting of bitsandbytes library and only works for GPU
#model = Blip2ForConditionalGeneration.from_pretrained(base_model_ckp, load_in_8bit = True, device_map = "auto")
#Inferance on CPU device
model = Blip2ForConditionalGeneration.from_pretrained(base_model_ckp)
model = PeftModel.from_pretrained(model, peft_model_ckp)
#init_model_required = False
def main():
st.title("Fashion Image Caption using BLIP2")
#init_model()
#Select few sample images for the catagory of cloths
#option = st.selectbox('Select from sample an images', ('cap', 'tee', 'dress'), index = -1)
#st.text("OR")
file_name = st.file_uploader("Upload an image")
#if file_name is None and option is not None:
# file_name = os.path.join(sample_img_path, option)
if file_name is not None:
image_col, caption_text = st.columns(2)
image_col.header("Image")
image = Image.open(file_name)
image_col.image(image, use_column_width = True)
#Preprocess the image
#Inferance on GPU. When used this on GPU will get errors like: "slow_conv2d_cpu" not implemented for 'Half'" , " Input type (float) and bias type (struct c10::Half)"
#inputs = processor(images = image, return_tensors = "pt").to('cuda', torch.float16)
#Inferance on CPU
inputs = processor(images = image, return_tensors = "pt")
pixel_values = inputs.pixel_values
#Predict the caption for the imahe
generated_ids = model.generate(pixel_values = pixel_values, max_length = 25)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
#Output the predict text
caption_text.header("Generated Caption")
caption_text.text(generated_caption)
if __name__ == "__main__":
main()