Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.layers import DepthwiseConv2D
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Disable scientific notation for clarity
|
8 |
+
np.set_printoptions(suppress=True)
|
9 |
+
|
10 |
+
# Custom object for DepthwiseConv2D
|
11 |
+
custom_objects = {'DepthwiseConv2D': DepthwiseConv2D}
|
12 |
+
|
13 |
+
# Load the model with custom objects
|
14 |
+
model = load_model("model/pleasuredomes_image_model.h5", custom_objects=custom_objects, compile=False)
|
15 |
+
|
16 |
+
# Load the labels
|
17 |
+
class_names = open("model/labels.txt", "r").readlines()
|
18 |
+
|
19 |
+
def predict_image(image):
|
20 |
+
"""
|
21 |
+
Function to process the image and make a prediction using the loaded model.
|
22 |
+
"""
|
23 |
+
# Resize the image to be at least 224x224 and then crop from the center
|
24 |
+
size = (224, 224)
|
25 |
+
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
|
26 |
+
|
27 |
+
# Turn the image into a numpy array
|
28 |
+
image_array = np.asarray(image)
|
29 |
+
|
30 |
+
# Normalize the image
|
31 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
|
32 |
+
|
33 |
+
# Create the array of the right shape to feed into the keras model
|
34 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
35 |
+
data[0] = normalized_image_array
|
36 |
+
|
37 |
+
# Predict the model
|
38 |
+
prediction = model.predict(data)
|
39 |
+
index = np.argmax(prediction)
|
40 |
+
class_name = class_names[index].strip()
|
41 |
+
confidence_score = prediction[0][index]
|
42 |
+
|
43 |
+
return f"Class: {class_name}, Confidence Score: {confidence_score:.2f}"
|
44 |
+
|
45 |
+
# Create a Gradio interface
|
46 |
+
interface = gr.Interface(
|
47 |
+
fn=predict_image,
|
48 |
+
inputs=gr.inputs.Image(type="pil"),
|
49 |
+
outputs="text",
|
50 |
+
title="Image Classification",
|
51 |
+
description="Upload an image to classify it using the pre-trained model."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Launch the interface
|
55 |
+
if __name__ == "__main__":
|
56 |
+
interface.launch()
|