import gradio as gr import requests import time import json import base64 import os from io import BytesIO import html import re from PIL import Image # Add this import class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): response = self._post(f"{self.base}/sd/generate", params) return response.json() def transform(self, params): response = self._post(f"{self.base}/sd/transform", params) return response.json() def controlnet(self, params): response = self._post(f"{self.base}/sd/controlnet", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): response = self._get(f"{self.base}/sd/models") return response.json() def list_samplers(self): response = self._get(f"{self.base}/sd/samplers") return response.json() def list_loras(self): response = self._get(f"{self.base}/sd/loras") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image): # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string def remove_id_and_ext(text): text = re.sub(r'\[.*\]$', '', text) extension = text[-12:].strip() if extension == "safetensors": text = text[:-13] elif extension == "ckpt": text = text[:-4] return text def get_data(text): results = {} patterns = { 'prompt': r'(.*)', 'negative_prompt': r'Negative prompt: (.*)', 'steps': r'Steps: (\d+),', 'seed': r'Seed: (\d+),', 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 'model': r'Model:\s*([^\s,]+)', 'cfg_scale': r'CFG scale:\s*([\d\.]+)', 'size': r'Size:\s*([0-9]+x[0-9]+)', } for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: match = re.search(patterns[key], text) if match: results[key] = match.group(1) else: results[key] = None if results['size'] is not None: w, h = results['size'].split("x") results['w'] = w results['h'] = h else: results['w'] = None results['h'] = None return results def send_to_txt2img(image): result = {tabs: gr.update(selected="t2i")} try: text = image.info['parameters'] data = get_data(text) result[prompt] = gr.update(value=data['prompt']) result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update() result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() if model in model_names: result[model] = gr.update(value=model_names[model]) else: result[model] = gr.update() return result except Exception as e: print(e) return result prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) model_list = prodia_client.list_models() model_names = {} for model_name in model_list: name_without_ext = remove_id_and_ext(model_name) model_names[name_without_ext] = model_name def add_watermark(image_path, watermark_path, position, scale=1.5): base_image = Image.open(image_path) watermark = Image.open(watermark_path).convert("RGBA") # Resize the watermark watermark = watermark.resize((int(watermark.width * scale), int(watermark.height * scale)), Image.LANCZOS) # Calculate the position if position == 'bottom_right': position = (base_image.width - watermark.width, base_image.height - watermark.height) # Paste the watermark base_image.paste(watermark, position, watermark) return base_image def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, lora, batch_size, batch_count): images = [] for _ in range(batch_count): for _ in range(batch_size): # Loop for batch size result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "upscale": True, "width": width, "height": height, "seed": seed, "lora": lora }) job = prodia_client.wait(result) print(job) # Debugging: print the job dictionary if "imageUrl" not in job: raise KeyError(f"'imageUrl' not found in job response: {job}") image_url = job["imageUrl"] print(f"Downloading image from URL: {image_url}") # Debugging: print the image URL # Download the image response = requests.get(image_url) image_path = f"generated_image_{len(images)}.png" with open(image_path, "wb") as f: f.write(response.content) # Add watermark watermarked_image = add_watermark(image_path, "logo.webp", "bottom_right") watermarked_image.save(image_path) images.append(image_path) return images def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, lora, batch_size, batch_count): images = [] for _ in range(batch_count): for _ in range(batch_size): # Loop for batch size result = prodia_client.transform({ "imageData": image_to_base64(input_image), "denoising_strength": denoising, "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "upscale": True, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed, "lora": lora }) job = prodia_client.wait(result) print(job) # Debugging: print the job dictionary if "imageUrl" not in job: raise KeyError(f"'imageUrl' not found in job response: {job}") image_url = job["imageUrl"] print(f"Downloading image from URL: {image_url}") # Debugging: print the image URL # Download the image response = requests.get(image_url) image_path = f"transformed_image_{len(images)}.png" with open(image_path, "wb") as f: f.write(response.content) # Add watermark watermarked_image = add_watermark(image_path, "logo.webp", "bottom_right") watermarked_image.save(image_path) images.append(image_path) return images css = """ #generate { height: 100%; } """ loras = prodia_client.list_loras() # Set default LoRA default_lora = "more_details_v10" if "more_details_v10" in loras else loras[0] with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo: # Apply the Soft theme with gr.Row(): with gr.Column(scale=6): model = gr.Dropdown(interactive=True, value="amIReal_V41.safetensors [0a8a2e61]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) lora = gr.Dropdown(interactive=True, value=default_lora, show_label=True, label="LoRA", choices=loras) # Set default LoRA with gr.Tabs() as tabs: with gr.Tab("txt2img", id='t2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="(3d, render, cgi, doll, painting, fake, cartoon, 3d modeling:1.4), (worst quality, low quality:1.4), child, deformed, malformed, bad teeth, bad hands, bad fingers, bad eyes, long body, blurry, duplicated, cloned, duplicate body parts, disfigured, extra limbs, fused fingers, extra fingers, twisted, distorted, malformed hands, mutated hands, mutated fingers, conjoined, missing limbs, bad anatomy, bad proportions, logo, watermark, text, copyright, signature, lowres, mutated, mutilated, artifacts, gross, ugly, tattoo, weird lettering, weird drawing, easynegative, FastNegativeV2") with gr.Column(): text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): with gr.Row(): with gr.Column(scale=1): sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) with gr.Row(): with gr.Column(scale=1): width = gr.Slider(label="Width", maximum=1024, value=640, step=8) height = gr.Slider(label="Height", maximum=1024, value=1024, step=8) with gr.Column(scale=1): batch_size = gr.Slider(label="Batch Size", minimum=1, maximum=4, value=1, step=1) # Add batch size slider batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1) # Add batch count slider cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=2): image_output = gr.Gallery(label="Generated Images") # Use Gallery to display multiple images text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, lora, batch_size, batch_count], outputs=image_output, concurrency_limit=64) # Add batch size and count inputs with gr.Tab("img2img", id='i2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="(3d, render, cgi, doll, painting, fake, cartoon, 3d modeling:1.4), (worst quality, low quality:1.4), child, deformed, malformed, bad teeth, bad hands, bad fingers, bad eyes, long body, blurry, duplicated, cloned, duplicate body parts, disfigured, extra limbs, fused fingers, extra fingers, twisted, distorted, malformed hands, mutated hands, mutated fingers, conjoined, missing limbs, bad anatomy, bad proportions, logo, watermark, text, copyright, signature, lowres, mutated, mutilated, artifacts, gross, ugly, tattoo, weird lettering, weird drawing, easynegative, FastNegativeV2") with gr.Column(): i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): i2i_image_input = gr.Image(type="pil") with gr.Row(): with gr.Column(scale=1): i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) with gr.Row(): with gr.Column(scale=1): i2i_width = gr.Slider(label="Width", maximum=1024, value=640, step=8) i2i_height = gr.Slider(label="Height", maximum=1024, value=1024, step=8) with gr.Column(scale=1): i2i_batch_size = gr.Slider(label="Batch Size", minimum=1, maximum=4, value=1, step=1) # Add batch size slider i2i_batch_count = gr.Slider(label="Batch Count", minimum=1, maximum=4, value=1, step=1) # Add batch count slider i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1) i2i_seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=2): i2i_image_output = gr.Gallery(label="Transformed Images") # Use Gallery to display multiple images i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height, i2i_seed, lora, i2i_batch_size, i2i_batch_count], outputs=i2i_image_output, concurrency_limit=64) # Add batch size and count inputs with gr.Tab("PNG Info"): def plaintext_to_html(text, classname=None): content = "
\n".join(html.escape(x) for x in text.split('\n')) return f"

{content}

" if classname else f"

{content}

" def get_exif_data(image): items = image.info info = '' for key, text in items.items(): info += f"""

{plaintext_to_html(str(key))}

{plaintext_to_html(str(text))}

""".strip()+"\n" if len(info) == 0: message = "Nothing found in the image." info = f"

{message}

" return info with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") with gr.Column(): exif_output = gr.HTML(label="EXIF Data") send_to_txt2img_btn = gr.Button("Send to txt2img") image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output) send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt, steps, seed, model, sampler, width, height, cfg_scale], concurrency_limit=64) demo.queue(max_size=80, api_open=True).launch(max_threads=256, show_api=True)