import numpy as np from sklearn.linear_model import LogisticRegression # Generate random data X = np.random.randint(0, 100, (1000, 2)) y = np.random.randint(0, 2, 1000) # Split the data into training and test sets X_train = X[:750] y_train = y[:750] X_test = X[750:] y_test = y[750:] # Create the classifier clf = LogisticRegression() # Train the classifier clf.fit(X_train, y_train) # Predict the labels of the test set y_pred = clf.predict(X_test) # Evaluate the accuracy of the classifier accuracy = np.mean(y_pred == y_test) print("Accuracy:", accuracy)