Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the saved model and tokenizer
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_path = "./bert_qa_model"
|
9 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_path)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
return model, tokenizer
|
12 |
+
|
13 |
+
model, tokenizer = load_model()
|
14 |
+
|
15 |
+
def answer_question(context, question):
|
16 |
+
# Tokenize input
|
17 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
18 |
+
|
19 |
+
# Get model output
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
|
23 |
+
# Get start and end logits
|
24 |
+
answer_start = torch.argmax(outputs.start_logits)
|
25 |
+
answer_end = torch.argmax(outputs.end_logits) + 1
|
26 |
+
|
27 |
+
# Decode the answer
|
28 |
+
answer = tokenizer.decode(inputs["input_ids"][0][answer_start:answer_end])
|
29 |
+
|
30 |
+
return answer
|
31 |
+
|
32 |
+
# Streamlit app
|
33 |
+
st.title("Question Answering System")
|
34 |
+
|
35 |
+
st.write("Enter a context and a question, and the model will provide an answer based on the context.")
|
36 |
+
|
37 |
+
context = st.text_area("Context", height=200)
|
38 |
+
question = st.text_input("Question")
|
39 |
+
|
40 |
+
if st.button("Get Answer"):
|
41 |
+
if context and question:
|
42 |
+
answer = answer_question(context, question)
|
43 |
+
st.success(f"Answer: {answer}")
|
44 |
+
else:
|
45 |
+
st.error("Please provide both context and question.")
|
46 |
+
|
47 |
+
st.markdown("---")
|
48 |
+
st.write("Powered by Hugging Face Transformers and Streamlit")
|