Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
# Load the model and tokenizer
|
5 |
model_name = "gpt2-large"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -18,17 +19,14 @@ if st.button("Generate Blog Post"):
|
|
18 |
# Prepare the prompt
|
19 |
prompt = f"Write a blog post about {topic}:\n\n"
|
20 |
|
21 |
-
# Generate text
|
22 |
-
generation_config = GenerationConfig(max_new_tokens=50, do_sample=True, temperature=0.7)
|
23 |
-
|
24 |
# Tokenize the input
|
25 |
inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")
|
26 |
|
27 |
-
#
|
28 |
-
model_output = model.generate(inputs_encoded
|
29 |
|
30 |
# Decode the output
|
31 |
-
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
32 |
|
33 |
# Display the generated blog post
|
34 |
st.subheader("Generated Blog Post:")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "gpt2-large"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
19 |
# Prepare the prompt
|
20 |
prompt = f"Write a blog post about {topic}:\n\n"
|
21 |
|
|
|
|
|
|
|
22 |
# Tokenize the input
|
23 |
inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")
|
24 |
|
25 |
+
# Generate text
|
26 |
+
model_output = model.generate(inputs_encoded, max_new_tokens=50, do_sample=True, temperature=0.7)
|
27 |
|
28 |
# Decode the output
|
29 |
+
output = tokenizer.decode(model_output[0], skip_special_tokens=True)
|
30 |
|
31 |
# Display the generated blog post
|
32 |
st.subheader("Generated Blog Post:")
|