msa17 commited on
Commit
2e641aa
·
verified ·
1 Parent(s): 91a71ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -54,11 +54,20 @@ This bar chart illustrates the number of buildings in each county, highlighting
54
  """)
55
 
56
  # Visualization 2: Year-wise Construction of Buildings
57
- st.header("2. Year-wise Construction of Buildings")
58
- yearly_construction = data['Year Constructed'].dropna().astype(int).value_counts().reset_index()
 
 
 
 
 
 
 
59
  yearly_construction.columns = ['Year Constructed', 'Building Count']
60
  yearly_construction = yearly_construction.sort_values('Year Constructed')
61
 
 
 
62
  year_chart = alt.Chart(yearly_construction).mark_line(point=True, color='orange').encode(
63
  alt.X('Year Constructed:Q', title='Year Constructed'),
64
  alt.Y('Building Count:Q', title='Number of Buildings'),
@@ -84,6 +93,7 @@ This line chart displays the number of buildings constructed each year, revealin
84
  - Allow users to filter the data by building type or agency to explore specific trends.
85
  """)
86
 
 
87
  # Footer
88
  st.markdown("""
89
  ---
 
54
  """)
55
 
56
  # Visualization 2: Year-wise Construction of Buildings
57
+ # Data Preprocessing for Year-wise Construction Visualization
58
+ # Convert 'Year Constructed' to numeric, handling errors
59
+ data['Year Constructed'] = pd.to_numeric(data['Year Constructed'], errors='coerce')
60
+
61
+ # Filter out rows where 'Year Constructed' is 0 or NaN
62
+ data_filtered = data[(data['Year Constructed'] > 0) & (~data['Year Constructed'].isna())]
63
+
64
+ # Group by 'Year Constructed' and count the number of buildings
65
+ yearly_construction = data_filtered['Year Constructed'].value_counts().reset_index()
66
  yearly_construction.columns = ['Year Constructed', 'Building Count']
67
  yearly_construction = yearly_construction.sort_values('Year Constructed')
68
 
69
+ # Visualization: Year-wise Construction of Buildings
70
+ st.header("2. Year-wise Construction of Buildings")
71
  year_chart = alt.Chart(yearly_construction).mark_line(point=True, color='orange').encode(
72
  alt.X('Year Constructed:Q', title='Year Constructed'),
73
  alt.Y('Building Count:Q', title='Number of Buildings'),
 
93
  - Allow users to filter the data by building type or agency to explore specific trends.
94
  """)
95
 
96
+
97
  # Footer
98
  st.markdown("""
99
  ---