File size: 1,863 Bytes
b74bd43
096c0b6
 
b74bd43
 
 
 
 
c2e2c3b
b74bd43
 
c2e2c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74bd43
 
 
 
 
 
 
 
 
 
df7fa67
b74bd43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea031e1
096c0b6
 
 
 
69d09d7
b74bd43
a044450
b74bd43
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from pprint import pprint, pformat
import os

import gradio as gr
import click
from rasa.nlu.model import Interpreter


RASA_MODEL_PATH = "woz_nlu_agent/models/nlu"
interpreter = None

MODEL_TYPES = {
    "Out-of-scope classifier": "oos",
    "Intent classifier": "intent_transformer",
    "Intent and Entity extractor": "rasa_intent_entity"
}

def predict(model_type, input):
    if MODEL_TYPES[model_type] == "rasa_intent_entity":
        return rasa_predict(input)
    elif MODEL_TYPES[model_tyoe] == "oos":
        return "TODO: out of scope"
    elif MODEL_TYPES[model_type] == "intent_transformer":
        return "TODO:: intent_transformer"


def rasa_predict(input):

    def rasa_output(text):
        message = str(text).strip()
        result = interpreter.parse(message)
        return result

    response = rasa_output(input)
    
    del response["response_selector"]
    response["intent_ranking"] = response["intent_ranking"][:3]
    if "id" in response["intent"]:
        del response["intent"]["id"]
    for i in response["intent_ranking"]:
        if "id" in i:
            del i["id"]
    for e in response["entities"]:
        if "extractor" in e:
            del e["extractor"]
        if "start" in e and "end" in e:
            del e["start"]
            del e["end"]

    return pformat(response, indent=4)


def main():
    global interpreter
    print("Loading model...")
    print(os.listdir("woz_nlu_agent/models/nlu"))
    print(open("woz_nlu_agent/models/nlu/metadata.json", "r").read())
    import json
    print(json.load(open("woz_nlu_agent/models/nlu/metadata.json", "r")))
    
    interpreter = Interpreter.load(RASA_MODEL_PATH)
    print("Model loaded.")
    iface = gr.Interface(fn=predict, inputs=[gr.inputs.Dropdown(MODEL_TYPES.keys()), "text"], outputs="text")
    iface.launch()


if __name__ == "__main__":
    main()