File size: 2,441 Bytes
b74bd43 096c0b6 b74bd43 4c94ed1 b74bd43 b7549d4 c2e2c3b b74bd43 b7549d4 c2e2c3b 346d5c5 b7549d4 c2e2c3b b7549d4 e15feb1 b7549d4 c2e2c3b b74bd43 df7fa67 b74bd43 ea031e1 096c0b6 69d09d7 b74bd43 0e66014 b74bd43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from pprint import pprint, pformat
import os
import gradio as gr
import click
from rasa.nlu.model import Interpreter
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Rasa intent + entity extractor
RASA_MODEL_PATH = "woz_nlu_agent/models/nlu"
interpreter = None
# OOS classifier
tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116")
model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116")
MODEL_TYPES = {
"Out-of-scope classifier": "oos",
"Intent classifier": "intent_transformer",
"Intent and Entity extractor": "rasa_intent_entity"
}
def predict(model_type, input):
if MODEL_TYPES[model_type] == "rasa_intent_entity":
return rasa_predict(input)
elif MODEL_TYPES[model_type] == "oos":
return oos_predict(input)
elif MODEL_TYPES[model_type] == "intent_transformer":
return "TODO:: intent_transformer"
def oos_predict(input):
inputs = tokenizer(input, return_tensors="pt")
outputs = model(**inputs).logits
outputs = torch.softmax(torch.tensor(outputs), dim=-1)[0]
return str({"In scope": outputs[1], "Out of scope": outputs[0]})
def rasa_predict(input):
def rasa_output(text):
message = str(text).strip()
result = interpreter.parse(message)
return result
response = rasa_output(input)
del response["response_selector"]
response["intent_ranking"] = response["intent_ranking"][:3]
if "id" in response["intent"]:
del response["intent"]["id"]
for i in response["intent_ranking"]:
if "id" in i:
del i["id"]
for e in response["entities"]:
if "extractor" in e:
del e["extractor"]
if "start" in e and "end" in e:
del e["start"]
del e["end"]
return pformat(response, indent=4)
def main():
global interpreter
print("Loading model...")
print(os.listdir("woz_nlu_agent/models/nlu"))
print(open("woz_nlu_agent/models/nlu/metadata.json", "r").read())
import json
print(json.load(open("woz_nlu_agent/models/nlu/metadata.json", "r")))
interpreter = Interpreter.load(RASA_MODEL_PATH)
print("Model loaded.")
iface = gr.Interface(fn=predict, inputs=[gr.inputs.Dropdown(list(MODEL_TYPES.keys())), "text"], outputs="text")
iface.launch()
if __name__ == "__main__":
main()
|