Add lookup tables to NLU model
Browse files- .gitattributes +1 -0
- app.py +6 -14
.gitattributes
CHANGED
@@ -41,3 +41,4 @@ woz_nlu_agent/models/nlu/checkpoint filter=lfs diff=lfs merge=lfs -text
|
|
41 |
woz_nlu_agent/models/nlu/component_2_LexicalSyntacticFeaturizer.feature_to_idx_dict.pkl filter=lfs diff=lfs merge=lfs -text
|
42 |
woz_nlu_agent/models/nlu/component_3_CountVectorsFeaturizer.pkl filter=lfs diff=lfs merge=lfs -text
|
43 |
woz_nlu_agent/models/nlu/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
41 |
woz_nlu_agent/models/nlu/component_2_LexicalSyntacticFeaturizer.feature_to_idx_dict.pkl filter=lfs diff=lfs merge=lfs -text
|
42 |
woz_nlu_agent/models/nlu/component_3_CountVectorsFeaturizer.pkl filter=lfs diff=lfs merge=lfs -text
|
43 |
woz_nlu_agent/models/nlu/** filter=lfs diff=lfs merge=lfs -text
|
44 |
+
woz_nlu_agent/models/nlu-lookup-1/** filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -10,12 +10,13 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
10 |
|
11 |
|
12 |
# Rasa intent + entity extractor
|
13 |
-
RASA_MODEL_PATH = "woz_nlu_agent/models/nlu"
|
14 |
-
interpreter =
|
15 |
|
16 |
# OOS classifier
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
|
21 |
MODEL_TYPES = {
|
@@ -30,7 +31,7 @@ def predict(model_type, input):
|
|
30 |
elif MODEL_TYPES[model_type] == "oos":
|
31 |
return oos_predict(input)
|
32 |
elif MODEL_TYPES[model_type] == "intent_transformer":
|
33 |
-
return "
|
34 |
|
35 |
|
36 |
def oos_predict(input):
|
@@ -67,15 +68,6 @@ def rasa_predict(input):
|
|
67 |
|
68 |
|
69 |
def main():
|
70 |
-
global interpreter
|
71 |
-
print("Loading model...")
|
72 |
-
print(os.listdir("woz_nlu_agent/models/nlu"))
|
73 |
-
print(open("woz_nlu_agent/models/nlu/metadata.json", "r").read())
|
74 |
-
import json
|
75 |
-
print(json.load(open("woz_nlu_agent/models/nlu/metadata.json", "r")))
|
76 |
-
|
77 |
-
interpreter = Interpreter.load(RASA_MODEL_PATH)
|
78 |
-
print("Model loaded.")
|
79 |
iface = gr.Interface(fn=predict, inputs=[gr.inputs.Dropdown(list(MODEL_TYPES.keys())), "text"], outputs="text")
|
80 |
iface.launch()
|
81 |
|
|
|
10 |
|
11 |
|
12 |
# Rasa intent + entity extractor
|
13 |
+
RASA_MODEL_PATH = "woz_nlu_agent/models/nlu-lookup-1"
|
14 |
+
interpreter = Interpreter.load(RASA_MODEL_PATH)
|
15 |
|
16 |
# OOS classifier
|
17 |
+
OOS_MODEL= "msamogh/autonlp-cai-out-of-scope-649919116"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(OOS_MODEL)
|
19 |
+
model = AutoModelForSequenceClassification.from_pretrained(OOS_MODEL)
|
20 |
|
21 |
|
22 |
MODEL_TYPES = {
|
|
|
31 |
elif MODEL_TYPES[model_type] == "oos":
|
32 |
return oos_predict(input)
|
33 |
elif MODEL_TYPES[model_type] == "intent_transformer":
|
34 |
+
return "WIP: intent_transformer"
|
35 |
|
36 |
|
37 |
def oos_predict(input):
|
|
|
68 |
|
69 |
|
70 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
iface = gr.Interface(fn=predict, inputs=[gr.inputs.Dropdown(list(MODEL_TYPES.keys())), "text"], outputs="text")
|
72 |
iface.launch()
|
73 |
|