File size: 12,511 Bytes
84bfd88
 
 
 
 
 
 
 
 
 
02327b3
84bfd88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02327b3
84bfd88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import requests
import numpy as np
# from bio_embeddings.embed import SeqVecEmbedder, ProtTransBertBFDEmbedder, ProtTransT5XLU50Embedder
from transformers import T5Tokenizer, T5EncoderModel
import torch
import re
import concurrent.futures
from tqdm.auto import tqdm
import multiprocessing
from multiprocessing import Pool
import spaces


ENCODERS = {
    # "seqvec": SeqVecEmbedder(),
    # "prottrans_bert_bfd": ProtTransBertBFDEmbedder(),
    # "prottrans_t5_xl_u50": ProtTransT5XLU50Embedder(),
    "prot_t5": {
        "tokenizer": T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False),
        "model": T5EncoderModel.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc')
    },
    "prost_t5": {
        "tokenizer": T5Tokenizer.from_pretrained("Rostlab/ProstT5", do_lower_case=False),
        "model": T5EncoderModel.from_pretrained("Rostlab/ProstT5")
    }
}


def drugbank2smiles(drugbank_id):
    url = f"https://go.drugbank.com/drugs/{drugbank_id}.smiles"
    response = requests.get(url)

    if response.status_code == 200:
        return response.text
    else:
        # print(f"Failed to get SMILES for {drugbank_id}")
        return None


def uniprot2sequence(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.fasta"
    response = requests.get(url)

    if response.status_code == 200:
        # Extract sequence from FASTA format
        sequence = "".join(response.text.split("\n")[1:])
        return sequence
    else:
        # print(f"Failed to get sequence for {uniprot_id}")
        return None


@spaces.GPU
def encode_sequences(sequences: list, encoder: str):
    if encoder not in ENCODERS.keys():
        raise ValueError(f"Invalid encoder: {encoder}")
    
    model = ENCODERS[encoder]["model"]
    tokenizer = ENCODERS[encoder]["tokenizer"]  

    # Cache for storing encoded sequences
    cache = {}

    def encode_sequence(sequence: str):
        if sequence is None:
            return None
        if len(sequence) <= 3:
            raise ValueError(f"Invalid sequence: {sequence}")
        # Check if the sequence is already in the cache
        if sequence in cache:
            return cache[sequence]
        else:
            # Encode the sequence and store it in the cache
            try:
                encoded_sequence = model.embed(sequence)
                encoded_sequence = np.mean(encoded_sequence, axis=0)
                cache[sequence] = encoded_sequence
                return encoded_sequence
            except Exception as e:
                print(f"Failed to encode sequence: {sequence}")
                print(e)
                return None
                
    def encode_sequence_device_failover(sequence: str, function, timeout: int = 120):
        if sequence is None:
            return None
        
        if sequence in cache:
            return cache[sequence]
        
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        torch.cuda.empty_cache()
        
        try:
            # Try to process using GPU
            result = function(sequence, device)
        except RuntimeError as e:
            print(e)
            return None
            if "CUDA out of memory." in str(e):
                print("Trying on CPU instead.")
                device = torch.device("cpu")
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    future = executor.submit(function, sequence, device)
                    try:
                        result = future.result(timeout=timeout)
                    except concurrent.futures.TimeoutError:
                        print(f"CPU encoding timed out.")
                        cache[sequence] = None
                        return None
            else:
                cache[sequence] = None
                raise Exception(e)
        except Exception as e:
            print(f"Failed to encode sequence: {sequence}")
            cache[sequence] = None
            return None
        
        cache[sequence] = result
        return result

    def encode_sequence_hf_3d(sequence, device):
        sequence_1d_list = [sequence]
        model.full() if device == "cpu" else model.half()
        model.to(device)

        ids = tokenizer.batch_encode_plus(
            sequence_1d_list,
            add_special_tokens=True,
            padding="longest",
            return_tensors="pt"
        ).to(device)

        with torch.no_grad():
            embedding = model(
                ids.input_ids,
                attention_mask=ids.attention_mask
            )

        # Skip the first token, which is the special token for the entire sequence and mean pool the rest
        assert embedding.last_hidden_state.shape[0] == 1

        encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
        encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()

        assert encoded_sequence.shape[0] == 1024
        return encoded_sequence
            
    def encode_sequence_hf(sequence, device):
        sequence_1d_list = [sequence]
        model.full() if device == "cpu" else model.half()
        model.to(device)

        ids = tokenizer.batch_encode_plus(
            sequence_1d_list,
            add_special_tokens=True,
            padding="longest",
            return_tensors="pt"
        ).to(device)

        with torch.no_grad():
            embedding = model(
                ids.input_ids,
                attention_mask=ids.attention_mask
            )
        
        assert embedding.last_hidden_state.shape[0] == 1

        encoded_sequence = embedding.last_hidden_state[0, :-1, :]
        encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()

        assert encoded_sequence.shape[0] == 1024
        return encoded_sequence

    # Use list comprehension to encode all sequences, utilizing the cache
    if encoder == "seqvec":
        raise NotImplementedError("SeqVec is not supported")
        seq = encoder_function.embed(list(sequences))
        seq = np.sum(seq, axis=0)

    if encoder == "prost_t5":
        sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
        # The direction of the translation is indicated by two special tokens:
        # if you go from AAs to 3Di (or if you want to embed AAs), you need to prepend "<AA2fold>"
        # if you go from 3Di to AAs (or if you want to embed 3Di), you need to prepend "<fold2AA>"
        sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
        seq = [encode_sequence_device_failover(sequence, encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]

    elif encoder == "prot_t5":
        sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
        seq = [encode_sequence_device_failover(sequence, encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]

    else:
        raise NotImplementedError("SeqVec is not supported")
        seq = [encode_sequence(sequence) for sequence in sequences]
        
    return np.array(seq)


class SequenceEncoder:
    def __init__(self, encoder: str):
        if encoder not in ENCODERS:
            raise ValueError(f"Invalid encoder: {encoder}")
        self.encoder = encoder
        self.model = ENCODERS[encoder]["model"]
        self.tokenizer = ENCODERS[encoder]["tokenizer"]
        self.cache = {}

    def encode_sequence(self, sequence: str):
        if sequence is None:
            return None
        if len(sequence) <= 3:
            raise ValueError(f"Invalid sequence: {sequence}")
        
        if sequence in self.cache:
            return self.cache[sequence]
        
        try:
            encoded_sequence = self.model.embed(sequence)
            encoded_sequence = np.mean(encoded_sequence, axis=0)
            self.cache[sequence] = encoded_sequence
            return encoded_sequence
        except Exception as e:
            print(f"Failed to encode sequence: {sequence}")
            print(e)
            return None
    
    def encode_sequence_device_failover(self, sequence: str, function, timeout: int = 5):
        if sequence is None:
            return None
        
        if sequence in self.cache:
            return self.cache[sequence]
        
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        torch.cuda.empty_cache()
        
        try:
            result = function(sequence, device)
        except RuntimeError as e:
            return None
            print(e)
            if "CUDA out of memory." in str(e):
                print("Trying on CPU instead.")
                device = torch.device("cpu")
                with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
                    future = executor.submit(function, sequence, device)
                    try:
                        result = future.result(timeout=timeout)
                    except:
                        print(f"CPU encoding timed out.")
                        self.cache[sequence] = None
                        return None
                    finally:
                        executor.shutdown(wait=False)
            else:
                self.cache[sequence] = None
                return None
        except Exception as e:
            print(f"Failed to encode sequence: {sequence}")
            self.cache[sequence] = None
            return None
        
        self.cache[sequence] = result
        return result

    def encode_sequence_hf_3d(self, sequence, device):
        sequence_1d_list = [sequence]
        self.model.full() if device == "cpu" else self.model.half()
        self.model.to(device)

        ids = self.tokenizer.batch_encode_plus(
            sequence_1d_list,
            add_special_tokens=True,
            padding="longest",
            return_tensors="pt"
        ).to(device)

        with torch.no_grad():
            embedding = self.model(
                ids.input_ids,
                attention_mask=ids.attention_mask
            )

        assert embedding.last_hidden_state.shape[0] == 1

        encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
        encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()

        assert encoded_sequence.shape[0] == 1024
        return encoded_sequence

    def encode_sequence_hf(self, sequence, device):
        sequence_1d_list = [sequence]
        self.model.full() if device == "cpu" else self.model.half()
        self.model.to(device)

        ids = self.tokenizer.batch_encode_plus(
            sequence_1d_list,
            add_special_tokens=True,
            padding="longest",
            return_tensors="pt"
        ).to(device)

        with torch.no_grad():
            embedding = self.model(
                ids.input_ids,
                attention_mask=ids.attention_mask
            )
        
        assert embedding.last_hidden_state.shape[0] == 1

        encoded_sequence = embedding.last_hidden_state[0, :-1, :]
        encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()

        assert encoded_sequence.shape[0] == 1024
        return encoded_sequence

    def encode_sequences(self, sequences: list):
        if self.encoder == "seqvec":
            raise NotImplementedError("SeqVec is not supported")
            seq = self.encoder_function.embed(list(sequences))
            seq = np.sum(seq, axis=0)

        elif self.encoder == "prost_t5":
            sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
            sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
            seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]

        elif self.encoder == "prot_t5":
            sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
            seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]

        else:
            raise NotImplementedError("SeqVec is not supported")
            seq = [self.encode_sequence(sequence) for sequence in sequences]

        if any([x is None for x in seq]):
            return seq
        else:
            return np.array(seq)