Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,511 Bytes
84bfd88 02327b3 84bfd88 02327b3 84bfd88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import requests
import numpy as np
# from bio_embeddings.embed import SeqVecEmbedder, ProtTransBertBFDEmbedder, ProtTransT5XLU50Embedder
from transformers import T5Tokenizer, T5EncoderModel
import torch
import re
import concurrent.futures
from tqdm.auto import tqdm
import multiprocessing
from multiprocessing import Pool
import spaces
ENCODERS = {
# "seqvec": SeqVecEmbedder(),
# "prottrans_bert_bfd": ProtTransBertBFDEmbedder(),
# "prottrans_t5_xl_u50": ProtTransT5XLU50Embedder(),
"prot_t5": {
"tokenizer": T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False),
"model": T5EncoderModel.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc')
},
"prost_t5": {
"tokenizer": T5Tokenizer.from_pretrained("Rostlab/ProstT5", do_lower_case=False),
"model": T5EncoderModel.from_pretrained("Rostlab/ProstT5")
}
}
def drugbank2smiles(drugbank_id):
url = f"https://go.drugbank.com/drugs/{drugbank_id}.smiles"
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
# print(f"Failed to get SMILES for {drugbank_id}")
return None
def uniprot2sequence(uniprot_id):
url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.fasta"
response = requests.get(url)
if response.status_code == 200:
# Extract sequence from FASTA format
sequence = "".join(response.text.split("\n")[1:])
return sequence
else:
# print(f"Failed to get sequence for {uniprot_id}")
return None
@spaces.GPU
def encode_sequences(sequences: list, encoder: str):
if encoder not in ENCODERS.keys():
raise ValueError(f"Invalid encoder: {encoder}")
model = ENCODERS[encoder]["model"]
tokenizer = ENCODERS[encoder]["tokenizer"]
# Cache for storing encoded sequences
cache = {}
def encode_sequence(sequence: str):
if sequence is None:
return None
if len(sequence) <= 3:
raise ValueError(f"Invalid sequence: {sequence}")
# Check if the sequence is already in the cache
if sequence in cache:
return cache[sequence]
else:
# Encode the sequence and store it in the cache
try:
encoded_sequence = model.embed(sequence)
encoded_sequence = np.mean(encoded_sequence, axis=0)
cache[sequence] = encoded_sequence
return encoded_sequence
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
print(e)
return None
def encode_sequence_device_failover(sequence: str, function, timeout: int = 120):
if sequence is None:
return None
if sequence in cache:
return cache[sequence]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
try:
# Try to process using GPU
result = function(sequence, device)
except RuntimeError as e:
print(e)
return None
if "CUDA out of memory." in str(e):
print("Trying on CPU instead.")
device = torch.device("cpu")
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(function, sequence, device)
try:
result = future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
print(f"CPU encoding timed out.")
cache[sequence] = None
return None
else:
cache[sequence] = None
raise Exception(e)
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
cache[sequence] = None
return None
cache[sequence] = result
return result
def encode_sequence_hf_3d(sequence, device):
sequence_1d_list = [sequence]
model.full() if device == "cpu" else model.half()
model.to(device)
ids = tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = model(
ids.input_ids,
attention_mask=ids.attention_mask
)
# Skip the first token, which is the special token for the entire sequence and mean pool the rest
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequence_hf(sequence, device):
sequence_1d_list = [sequence]
model.full() if device == "cpu" else model.half()
model.to(device)
ids = tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
# Use list comprehension to encode all sequences, utilizing the cache
if encoder == "seqvec":
raise NotImplementedError("SeqVec is not supported")
seq = encoder_function.embed(list(sequences))
seq = np.sum(seq, axis=0)
if encoder == "prost_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
# The direction of the translation is indicated by two special tokens:
# if you go from AAs to 3Di (or if you want to embed AAs), you need to prepend "<AA2fold>"
# if you go from 3Di to AAs (or if you want to embed 3Di), you need to prepend "<fold2AA>"
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
elif encoder == "prot_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
else:
raise NotImplementedError("SeqVec is not supported")
seq = [encode_sequence(sequence) for sequence in sequences]
return np.array(seq)
class SequenceEncoder:
def __init__(self, encoder: str):
if encoder not in ENCODERS:
raise ValueError(f"Invalid encoder: {encoder}")
self.encoder = encoder
self.model = ENCODERS[encoder]["model"]
self.tokenizer = ENCODERS[encoder]["tokenizer"]
self.cache = {}
def encode_sequence(self, sequence: str):
if sequence is None:
return None
if len(sequence) <= 3:
raise ValueError(f"Invalid sequence: {sequence}")
if sequence in self.cache:
return self.cache[sequence]
try:
encoded_sequence = self.model.embed(sequence)
encoded_sequence = np.mean(encoded_sequence, axis=0)
self.cache[sequence] = encoded_sequence
return encoded_sequence
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
print(e)
return None
def encode_sequence_device_failover(self, sequence: str, function, timeout: int = 5):
if sequence is None:
return None
if sequence in self.cache:
return self.cache[sequence]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
try:
result = function(sequence, device)
except RuntimeError as e:
return None
print(e)
if "CUDA out of memory." in str(e):
print("Trying on CPU instead.")
device = torch.device("cpu")
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(function, sequence, device)
try:
result = future.result(timeout=timeout)
except:
print(f"CPU encoding timed out.")
self.cache[sequence] = None
return None
finally:
executor.shutdown(wait=False)
else:
self.cache[sequence] = None
return None
except Exception as e:
print(f"Failed to encode sequence: {sequence}")
self.cache[sequence] = None
return None
self.cache[sequence] = result
return result
def encode_sequence_hf_3d(self, sequence, device):
sequence_1d_list = [sequence]
self.model.full() if device == "cpu" else self.model.half()
self.model.to(device)
ids = self.tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = self.model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequence_hf(self, sequence, device):
sequence_1d_list = [sequence]
self.model.full() if device == "cpu" else self.model.half()
self.model.to(device)
ids = self.tokenizer.batch_encode_plus(
sequence_1d_list,
add_special_tokens=True,
padding="longest",
return_tensors="pt"
).to(device)
with torch.no_grad():
embedding = self.model(
ids.input_ids,
attention_mask=ids.attention_mask
)
assert embedding.last_hidden_state.shape[0] == 1
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
assert encoded_sequence.shape[0] == 1024
return encoded_sequence
def encode_sequences(self, sequences: list):
if self.encoder == "seqvec":
raise NotImplementedError("SeqVec is not supported")
seq = self.encoder_function.embed(list(sequences))
seq = np.sum(seq, axis=0)
elif self.encoder == "prost_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
elif self.encoder == "prot_t5":
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
else:
raise NotImplementedError("SeqVec is not supported")
seq = [self.encode_sequence(sequence) for sequence in sequences]
if any([x is None for x in seq]):
return seq
else:
return np.array(seq)
|