File size: 27,769 Bytes
26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from io import BytesIO
import math
import logging
import random
import warnings
import numpy as np
import torch
import base64
from torchvision import transforms
from PIL import Image, ImageFile
from data import data_utils
from data.ofa_dataset import OFADataset
from utils.vision_helper import RandomAugment
import utils.transforms as T
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
def get_whole_word_mask(bpe, dictionary):
if bpe is not None:
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
return mask_whole_words
return None
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
id = np.array([s["id"] for s in samples])
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
code_masks = None
if samples[0].get("code_mask", None) is not None:
code_masks = torch.cat([sample['code_mask'] for sample in samples])
conf = torch.cat([s['conf'] for s in samples], dim=0)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"patch_images": patch_images,
"patch_masks": patch_masks,
"code_masks": code_masks,
"prev_output_tokens": prev_output_tokens
},
"target": target,
"conf": conf
}
return batch
class UnifyDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
max_src_length=128,
max_tgt_length=30,
seed=7,
code_dict_size=8192,
num_bins=1000,
patch_image_size=384,
code_image_size=128,
pure_text_dataset=None,
pure_image_dataset=None,
detection_dataset=None,
all_object_list=None,
all_caption_list=None,
type2ans_dict=None,
ans2type_dict=None,
max_image_size=512,
mask_ratio=0.3,
random_ratio=0.0,
keep_ratio=0.0,
mask_length="span-poisson",
poisson_lambda=3.0,
replace_length=1,
read_from_img_path=False,
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.seed = seed
self.code_dict_size = code_dict_size
self.num_bins = num_bins
self.patch_image_size = patch_image_size
self.code_image_size = code_image_size
self.pure_text_dataset = pure_text_dataset
self.pure_image_dataset = pure_image_dataset
self.detection_dataset = detection_dataset
self.epoch = 0
self.all_object_list = all_object_list
self.all_caption_list = all_caption_list
self.type2ans_dict = type2ans_dict
self.ans2type_dict = ans2type_dict
self.mask_ratio = mask_ratio
self.random_ratio = random_ratio
self.keep_ratio = keep_ratio
self.mask_length = mask_length
self.poisson_lambda = poisson_lambda
self.replace_length = replace_length
if self.replace_length not in [-1, 0, 1]:
raise ValueError(f"invalid arg: replace_length={self.replace_length}")
if self.mask_length not in ["subword", "word", "span-poisson"]:
raise ValueError(f"invalid arg: mask-length={self.mask_length}")
if self.mask_length == "subword" and self.replace_length not in [0, 1]:
raise ValueError(f"if using subwords, use replace-length=1 or 0")
self.mask_idx = src_dict.index("<mask>")
self.mask_whole_word = (
get_whole_word_mask(self.bpe, self.src_dict)
if self.mask_length != "subword"
else None
)
self.mask_span_distribution = None
if self.mask_length == "span-poisson":
_lambda = self.poisson_lambda
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= _lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
self.mask_span_distribution = torch.distributions.Categorical(ps)
self.pos_tgt_item = self.encode_text(" yes")
self.neg_tgt_item = self.encode_text(" no")
self.mask_left = self.mask_top = int(0.5 * self.code_image_size)
self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size)
self.mask_ids = [
i*self.code_image_size*2+j
for i in range(self.code_image_size*2) for j in range(self.code_image_size*2)
if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom)
]
scales = np.arange(patch_image_size, 481).tolist()
# for image-text pair
self.patch_resize_transform = transforms.Compose([
T.RandomResize(scales, max_size=672),
transforms.CenterCrop(patch_image_size),
RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# for pure image
self.patch_crop_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
# for detection
self.detection_transform = T.Compose([
T.RandomHorizontalFlip(),
T.LargeScaleJitter(output_size=self.code_image_size*2, aug_scale_min=1.0, aug_scale_max=1.5),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
])
# for visual grounding
self.visual_grounding_transform = T.Compose([
T.RandomResize(scales, max_size=672),
T.ObjectCenterCrop((patch_image_size, patch_image_size)),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
])
self.read_from_img_path = read_from_img_path
def set_epoch(self, epoch, **unused):
self.epoch = epoch
def get_negative_caption(self, caption, gt_objects):
prob = random.random()
if gt_objects is not None and gt_objects != '' and prob > 0.6:
gt_object = random.choice(gt_objects.strip().split('&&'))
negative_object = random.choice(self.all_object_list[:-1])
negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
negative_caption = caption.replace(gt_object, negative_object)
else:
negative_caption = random.choice(self.all_caption_list)
return negative_caption
def get_negative_answer(self, answer, conf):
prob = random.random()
if conf > (prob + 0.1) and answer in self.ans2type_dict:
negative_answer_type = self.ans2type_dict[answer]
if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5:
negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1
else:
negative_answer_list = self.type2ans_dict[negative_answer_type]
negative_answer = random.choice(negative_answer_list[:-1])
negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
return negative_answer
negative_answer_list = self.type2ans_dict['other']
negative_answer = random.choice(negative_answer_list[:-1])
negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
return negative_answer
def process_image_text_pair(self, index):
uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index]
if self.read_from_img_path:
image = Image.open(image).convert("RGB")
else:
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None
patch_mask = torch.tensor([True])
conf = torch.tensor([1.0])
if type == 'caption':
tgt_caption = self.pre_caption(caption, self.max_tgt_length)
pos_src_caption = self.pre_caption(caption, self.max_src_length)
neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length)
src_item = self.encode_text(" what does the image describe?")
tgt_item = self.encode_text(" {}".format(tgt_caption))
pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption))
neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption))
elif type == 'qa':
question = self.pre_question(question, self.max_src_length)
ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
answer = max(ref_dict, key=ref_dict.get)
conf = ref_dict[answer]
src_item = self.encode_text(" {}".format(question))
tgt_item = self.encode_text(" {}".format(answer))
conf = torch.tensor([conf])
pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
neg_src_item = self.encode_text(
' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
)
elif type == 'visual_grounding':
conf = torch.tensor([1.0])
w, h = image.size
boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
x0, y0, x1, y1 = refs.strip().split(',')
boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
boxes_target["labels"] = np.array([0])
boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target)
quant_x0 = "<bin_{}>".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round()))
quant_y0 = "<bin_{}>".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round()))
quant_x1 = "<bin_{}>".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round()))
quant_y1 = "<bin_{}>".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round()))
region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
src_caption = self.pre_caption(caption, self.max_src_length)
src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption))
tgt_item = self.encode_text(region_coord, use_bpe=False)
else:
logger.info('type {} is not implemented'.format(type))
raise NotImplementedError
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
if type == 'caption' and dataset_name == 'cc12m':
target_item[:2] = self.src_dict.pad()
target_item[-1] = self.eos_item
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
examples = [example]
prob = random.random()
if type == 'visual_grounding':
region_example = example.copy()
region_prefix_item = self.encode_text(' what does the region describe? region:')
region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False)
region_src_item = torch.cat([region_prefix_item, region_coord_item])
region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length)))
region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item])
region_example["target"] = torch.cat([region_tgt_item, self.eos_item])
region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item])
region_example["conf"] = torch.tensor([1.0])
examples.append(region_example)
elif prob >= 0.5 and self.split == 'train':
pos_example = example.copy()
pos_example["source"] = pos_src_item
pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
examples.append(pos_example)
elif self.split == 'train':
neg_example = example.copy()
neg_example["source"] = neg_src_item
neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
examples.append(neg_example)
return examples
def process_pure_text(self, index):
patch_image = torch.zeros((3, self.code_image_size*2, self.code_image_size*2))
patch_mask = torch.tensor([False])
code_mask = torch.tensor([False])
conf = torch.tensor([2.0])
examples = []
for _ in range(2):
uniq_id, text = self.pure_text_dataset[index]
text = text.strip().lower()
text_item = self.encode_text(" {}".format(text), length=512)
text_item = text_item[-256:]
text_item = torch.cat([self.bos_item, text_item, self.eos_item])
mask_text_item = self.add_whole_word_mask(text_item.clone(), self.mask_ratio)
prefix_item = self.encode_text(' what is the complete text of " "?')
src_item = torch.cat([prefix_item[:-2], mask_text_item[1:-1], prefix_item[-2:]])
tgt_item = text_item[1:-1]
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
examples.append(example)
return examples
def process_pure_image(self, index):
image_id, image, code = self.pure_image_dataset[index]
if self.read_from_img_path:
image = Image.open(image).convert("RGB")
else:
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
patch_image = self.patch_crop_transform(image)
patch_image[:, self.mask_top:self.mask_bottom, self.mask_left:self.mask_right] = 0
patch_mask = torch.tensor([True])
src_item = self.encode_text(" what is the image in the middle part?")
image_code = torch.LongTensor([int(num) for num in code.strip().split()])
tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins
code_mask = torch.tensor([True])
conf = torch.tensor([2.0])
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": image_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
return [example]
def process_detection(self, index):
image_id, image, label = self.detection_dataset[index]
if self.read_from_img_path:
image = Image.open(image).convert("RGB")
else:
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
w, h = image.size
boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
label_list = label.strip().split('&&')
for label in label_list:
x0, y0, x1, y1, cat_id, cat = label.strip().split(',', 5)
boxes_target["boxes"].append([float(x0), float(y0), float(x1), float(y1)])
boxes_target["labels"].append(cat)
boxes_target["area"].append((float(x1) - float(x0)) * (float(y1) - float(y0)))
boxes_target["boxes"] = torch.tensor(boxes_target["boxes"])
boxes_target["labels"] = np.array(boxes_target["labels"])
boxes_target["area"] = torch.tensor(boxes_target["area"])
patch_image, boxes_target = self.detection_transform(image, boxes_target)
patch_mask = torch.tensor([True])
code_mask = torch.tensor([False])
conf = torch.tensor([2.0])
quant_boxes = []
for i, box in enumerate(boxes_target["boxes"]):
quant_boxes.extend(["<bin_{}>".format(int((pos * (self.num_bins - 1)).round())) for pos in box[:4]])
quant_boxes.append(self.bpe.encode(' {}'.format(boxes_target["labels"][i])))
src_item = self.encode_text(' what are the objects in the image?')
tgt_item = self.encode_text(' '.join(quant_boxes), use_bpe=False)
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": image_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"code_mask": code_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
"conf": conf,
}
return [example]
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch):
pair_samples = self.process_image_text_pair(index)
extra_samples = []
if self.split == 'train' and self.dataset.data_cnt % 8 == 0:
extra_samples += self.process_pure_text(0) if self.pure_text_dataset else []
extra_samples += self.process_pure_image(0) if self.pure_image_dataset else []
extra_samples += self.process_detection(0) if self.detection_dataset else []
return pair_samples, extra_samples
def word_starts(self, source):
if self.mask_whole_word is not None:
is_word_start = self.mask_whole_word.gather(0, source)
else:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
def add_whole_word_mask(self, source, p):
is_word_start = self.word_starts(source)
num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
num_inserts = 0
if num_to_mask == 0:
return source
if self.mask_span_distribution is not None:
lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < num_to_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < num_to_mask:
i += 1
lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
num_to_mask = i + 1
lengths = lengths[:num_to_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
num_inserts = num_to_mask - lengths.size(0)
num_to_mask -= num_inserts
if num_to_mask == 0:
return self.add_insertion_noise(source, num_inserts / source.size(0))
assert (lengths > 0).all()
else:
lengths = torch.ones((num_to_mask,)).long()
assert is_word_start[-1] == 0
word_starts = is_word_start.nonzero(as_tuple=False)
indices = word_starts[
torch.randperm(word_starts.size(0))[:num_to_mask]
].squeeze(1)
mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
source_length = source.size(0)
assert source_length - 1 not in indices
to_keep = torch.ones(source_length, dtype=torch.bool)
is_word_start[
-1
] = 255 # acts as a long length, so spans don't go over the end of doc
if self.replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1
while indices.size(0) > 0:
assert lengths.size() == indices.size()
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
)
assert source_length - 1 not in indices
source = source[to_keep]
if num_inserts > 0:
source = self.add_insertion_noise(source, num_inserts / source.size(0))
return source
def add_insertion_noise(self, tokens, p):
if p == 0.0:
return tokens
num_tokens = len(tokens)
n = int(math.ceil(num_tokens * p))
noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
noise_mask[noise_indices] = 1
result = torch.LongTensor(n + len(tokens)).fill_(-1)
num_random = int(math.ceil(n * self.random_ratio))
result[noise_indices[num_random:]] = self.mask_idx
result[noise_indices[:num_random]] = torch.randint(
low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,)
)
result[~noise_mask] = tokens
assert (result >= 0).all()
return result
def collater(self, samples, pad_to_length=None):
"""Merge samples of different tasks to form two mini-batches.
Args:
samples (List[Tuple]): samples to collate
Returns:
Tuple[dict]: two mini-batch containing the data of different tasks
"""
samples_v1 = [] # containing image-text pairs
samples_v2 = [] # containing detection data, text data and image data
for sample_tuple in samples:
samples_v1 += sample_tuple[0]
samples_v2 += sample_tuple[1]
if samples_v2 != []:
res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
return res_v1, res_v2
else:
res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
return res_v1
|