File size: 11,449 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402d77e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
402d77e
 
 
26fd00c
 
402d77e
 
 
 
 
 
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os

os.system('cd fairseq;'
          'pip install ./; cd ..')
os.system('ls -l')

import torch
import numpy as np
import gradio as gr
import cv2
from PIL import Image
from torchvision import transforms

from fairseq import utils, tasks, options
from fairseq import checkpoint_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf

from tasks.mm_tasks.caption import CaptionTask
from tasks.mm_tasks.refcoco import RefcocoTask
from tasks.mm_tasks.vqa_gen import VqaGenTask


def move2gpu(models, cfg):
    for model in models:
        model.eval()
        if use_fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)


def construct_transform(patch_image_size):
    mean = [0.5, 0.5, 0.5]
    std = [0.5, 0.5, 0.5]

    patch_resize_transform = transforms.Compose([
        lambda image: image.convert("RGB"),
        transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize(mean=mean, std=std),
    ])

    return patch_resize_transform


# Register tasks
tasks.register_task('caption', CaptionTask)
tasks.register_task('refcoco', RefcocoTask)
tasks.register_task('vqa_gen', VqaGenTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False

# # download checkpoints
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_demo.pt; '
#           'mkdir -p checkpoints; mv caption_demo.pt checkpoints/caption_demo.pt')
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcoco_demo.pt; '
#           'mkdir -p checkpoints; mv refcoco_demo.pt checkpoints/refcoco_demo.pt')
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/general_demo.pt; '
#           'mkdir -p checkpoints; mv general_demo.pt checkpoints/general_demo.pt')


checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'

# # Load ckpt & config for Image Captioning
# caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
#            "bpe_dir":"utils/BPE", "video_model_path": None,}

# caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
#     utils.split_paths(checkpoint_path),
#     arg_overrides=caption_overrides
# )

# # Load ckpt & config for Refcoco
# refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None}

# refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
#     utils.split_paths(checkpoint_path),
#     arg_overrides=refcoco_overrides
# )
# refcoco_cfg.common.seed = 7
# refcoco_cfg.generation.beam = 5
# refcoco_cfg.generation.min_len = 4
# refcoco_cfg.generation.max_len_a = 0
# refcoco_cfg.generation.max_len_b = 4
# refcoco_cfg.generation.no_repeat_ngram_size = 3

# # Load pretrained ckpt & config for VQA
# parser = options.get_generation_parser()
# input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
# args = options.parse_args_and_arch(parser, input_args)
# vqa_cfg = convert_namespace_to_omegaconf(args)
# vqa_task = tasks.setup_task(vqa_cfg.task)
# vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
#     utils.split_paths(vqa_cfg.common_eval.path),
#     task=vqa_task
# )

# Load pretrained ckpt & config for Generic Interface
parser = options.get_generation_parser()
input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
args = options.parse_args_and_arch(parser, input_args)
general_cfg = convert_namespace_to_omegaconf(args)
general_task = tasks.setup_task(general_cfg.task)
general_models, general_cfg = checkpoint_utils.load_model_ensemble(
    utils.split_paths(general_cfg.common_eval.path),
    task=general_task
)

# move models to gpu
# move2gpu(caption_models, caption_cfg)
# move2gpu(refcoco_models, refcoco_cfg)
# move2gpu(vqa_models, vqa_cfg)
move2gpu(general_models, general_cfg)

# # Initialize generator
# caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
# refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
# vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
# vqa_generator.zero_shot = True
# vqa_generator.constraint_trie = None
general_generator = general_task.build_generator(general_models, general_cfg.generation)

# Construct image transforms
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
general_transform = construct_transform(general_cfg.task.patch_image_size)

# Text preprocess
bos_item = torch.LongTensor([caption_task.src_dict.bos()])
eos_item = torch.LongTensor([caption_task.src_dict.eos()])
pad_idx = caption_task.src_dict.pad()


def get_symbols_to_strip_from_output(generator):
    if hasattr(generator, "symbols_to_strip_from_output"):
        return generator.symbols_to_strip_from_output
    else:
        return {generator.bos, generator.eos}


def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
    x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
    token_result = []
    bin_result = []
    img_result = []
    for token in x.strip().split():
      if token.startswith('<bin_'):
        bin_result.append(token)
      elif token.startswith('<code_'):
        img_result.append(token)
      else:
        if bpe is not None:
          token = bpe.decode('{}'.format(token))
        if tokenizer is not None:
          token = tokenizer.decode(token)
        if token.startswith(' ') or len(token_result) == 0:
          token_result.append(token.strip())
        else:
          token_result[-1] += token

    return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result)


def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg):
    bin_list = [int(bin[5:-1]) for bin in bins.strip().split()]
    coord_list = []
    coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
    coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
    coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
    coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
    return coord_list


def encode_text(text, length=None, append_bos=False, append_eos=False):
    line = [
        caption_task.bpe.encode(' {}'.format(word.strip()))
        if not word.startswith('<code_') and not word.startswith('<bin_') else word
        for word in text.strip().split()
    ]
    line = ' '.join(line)
    s = caption_task.tgt_dict.encode_line(
        line=line,
        add_if_not_exist=False,
        append_eos=False
    ).long()
    if length is not None:
        s = s[:length]
    if append_bos:
        s = torch.cat([bos_item, s])
    if append_eos:
        s = torch.cat([s, eos_item])
    return s


def construct_sample(image: Image, instruction: str, transform):
    patch_image = transform(image).unsqueeze(0)
    patch_mask = torch.tensor([True])

    instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0)
    instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction])
    sample = {
        "id": np.array(['42']),
        "net_input": {
            "src_tokens": instruction,
            "src_lengths": instruction_length,
            "patch_images": patch_image,
            "patch_masks": patch_mask,
        }
    }
    return sample


# Function to turn FP32 to FP16
def apply_half(t):
    if t.dtype is torch.float32:
        return t.to(dtype=torch.half)
    return t


def inference(image, task_type, instruction):
    if task_type == 'Image Captioning':
        task = caption_task
        models = caption_models
        generator = caption_generator
        instruction = 'what does the image describe?'
        transform = caption_transform
        cfg = caption_cfg
    elif task_type == 'Visual Question Answering':
        task = vqa_task
        models = vqa_models
        generator = vqa_generator
        transform = vqa_transform
        cfg = vqa_cfg
    elif task_type == 'Visual Grounding':
        task = refcoco_task
        models = refcoco_models
        generator = refcoco_generator
        instruction = 'which region does the text " {} " describe?'.format(instruction)
        transform = refcoco_transform
        cfg = refcoco_cfg
    elif task_type == 'General':
        task = general_task
        models = general_models
        generator = general_generator
        transform = general_transform
        cfg = general_cfg
    else:
        raise NotImplementedError

    # Construct input sample & preprocess for GPU if cuda available
    sample = construct_sample(image, instruction, transform)
    sample = utils.move_to_cuda(sample) if use_cuda else sample
    sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample

    # Generate result
    with torch.no_grad():
        hypos = task.inference_step(generator, models, sample)
        tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator)

    if bins.strip() != '':
        w, h = image.size
        w_resize_ratio = task.cfg.patch_image_size / w
        h_resize_ratio = task.cfg.patch_image_size / h
        img = np.asarray(image)
        coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg)
        cv2.rectangle(
            img,
            (int(coord_list[0]), int(coord_list[1])),
            (int(coord_list[2]), int(coord_list[3])),
            (0, 255, 0),
            3
        )
        return img, None
    else:
        return None, tokens

inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering", "Visual Grounding", "General"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = [gr.outputs.Image(type='pil'), 'text']
examples = [
    ['examples/pokemons.jpeg', 'Image Captioning', None],
    ['examples/cats.jpeg', 'Visual Question Answering', 'where are the cats?'],
    ['examples/one_piece.jpeg', 'Visual Grounding', 'a man in a straw hat and a red dress'],
    ['examples/three_houses.jpeg', 'General', 'which region does the text " a grey car " describe?'],
    ['examples/three_houses.jpeg', 'General', 'what color is the left car?']
]

title = "OFA"
description = "Gradio Demo for OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework"
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>"

io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
                  title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch()