File size: 11,449 Bytes
26fd00c 402d77e 26fd00c 402d77e 26fd00c 402d77e 26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
os.system('cd fairseq;'
'pip install ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
import gradio as gr
import cv2
from PIL import Image
from torchvision import transforms
from fairseq import utils, tasks, options
from fairseq import checkpoint_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from tasks.mm_tasks.caption import CaptionTask
from tasks.mm_tasks.refcoco import RefcocoTask
from tasks.mm_tasks.vqa_gen import VqaGenTask
def move2gpu(models, cfg):
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
def construct_transform(patch_image_size):
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
return patch_resize_transform
# Register tasks
tasks.register_task('caption', CaptionTask)
tasks.register_task('refcoco', RefcocoTask)
tasks.register_task('vqa_gen', VqaGenTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
# # download checkpoints
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_demo.pt; '
# 'mkdir -p checkpoints; mv caption_demo.pt checkpoints/caption_demo.pt')
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcoco_demo.pt; '
# 'mkdir -p checkpoints; mv refcoco_demo.pt checkpoints/refcoco_demo.pt')
# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/general_demo.pt; '
# 'mkdir -p checkpoints; mv general_demo.pt checkpoints/general_demo.pt')
checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'
# # Load ckpt & config for Image Captioning
# caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
# "bpe_dir":"utils/BPE", "video_model_path": None,}
# caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
# utils.split_paths(checkpoint_path),
# arg_overrides=caption_overrides
# )
# # Load ckpt & config for Refcoco
# refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None}
# refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
# utils.split_paths(checkpoint_path),
# arg_overrides=refcoco_overrides
# )
# refcoco_cfg.common.seed = 7
# refcoco_cfg.generation.beam = 5
# refcoco_cfg.generation.min_len = 4
# refcoco_cfg.generation.max_len_a = 0
# refcoco_cfg.generation.max_len_b = 4
# refcoco_cfg.generation.no_repeat_ngram_size = 3
# # Load pretrained ckpt & config for VQA
# parser = options.get_generation_parser()
# input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
# args = options.parse_args_and_arch(parser, input_args)
# vqa_cfg = convert_namespace_to_omegaconf(args)
# vqa_task = tasks.setup_task(vqa_cfg.task)
# vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
# utils.split_paths(vqa_cfg.common_eval.path),
# task=vqa_task
# )
# Load pretrained ckpt & config for Generic Interface
parser = options.get_generation_parser()
input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
args = options.parse_args_and_arch(parser, input_args)
general_cfg = convert_namespace_to_omegaconf(args)
general_task = tasks.setup_task(general_cfg.task)
general_models, general_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(general_cfg.common_eval.path),
task=general_task
)
# move models to gpu
# move2gpu(caption_models, caption_cfg)
# move2gpu(refcoco_models, refcoco_cfg)
# move2gpu(vqa_models, vqa_cfg)
move2gpu(general_models, general_cfg)
# # Initialize generator
# caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
# refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
# vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
# vqa_generator.zero_shot = True
# vqa_generator.constraint_trie = None
general_generator = general_task.build_generator(general_models, general_cfg.generation)
# Construct image transforms
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
general_transform = construct_transform(general_cfg.task.patch_image_size)
# Text preprocess
bos_item = torch.LongTensor([caption_task.src_dict.bos()])
eos_item = torch.LongTensor([caption_task.src_dict.eos()])
pad_idx = caption_task.src_dict.pad()
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.bos, generator.eos}
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
token_result = []
bin_result = []
img_result = []
for token in x.strip().split():
if token.startswith('<bin_'):
bin_result.append(token)
elif token.startswith('<code_'):
img_result.append(token)
else:
if bpe is not None:
token = bpe.decode('{}'.format(token))
if tokenizer is not None:
token = tokenizer.decode(token)
if token.startswith(' ') or len(token_result) == 0:
token_result.append(token.strip())
else:
token_result[-1] += token
return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result)
def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg):
bin_list = [int(bin[5:-1]) for bin in bins.strip().split()]
coord_list = []
coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
return coord_list
def encode_text(text, length=None, append_bos=False, append_eos=False):
line = [
caption_task.bpe.encode(' {}'.format(word.strip()))
if not word.startswith('<code_') and not word.startswith('<bin_') else word
for word in text.strip().split()
]
line = ' '.join(line)
s = caption_task.tgt_dict.encode_line(
line=line,
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
def construct_sample(image: Image, instruction: str, transform):
patch_image = transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0)
instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction])
sample = {
"id": np.array(['42']),
"net_input": {
"src_tokens": instruction,
"src_lengths": instruction_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
}
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def inference(image, task_type, instruction):
if task_type == 'Image Captioning':
task = caption_task
models = caption_models
generator = caption_generator
instruction = 'what does the image describe?'
transform = caption_transform
cfg = caption_cfg
elif task_type == 'Visual Question Answering':
task = vqa_task
models = vqa_models
generator = vqa_generator
transform = vqa_transform
cfg = vqa_cfg
elif task_type == 'Visual Grounding':
task = refcoco_task
models = refcoco_models
generator = refcoco_generator
instruction = 'which region does the text " {} " describe?'.format(instruction)
transform = refcoco_transform
cfg = refcoco_cfg
elif task_type == 'General':
task = general_task
models = general_models
generator = general_generator
transform = general_transform
cfg = general_cfg
else:
raise NotImplementedError
# Construct input sample & preprocess for GPU if cuda available
sample = construct_sample(image, instruction, transform)
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
# Generate result
with torch.no_grad():
hypos = task.inference_step(generator, models, sample)
tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator)
if bins.strip() != '':
w, h = image.size
w_resize_ratio = task.cfg.patch_image_size / w
h_resize_ratio = task.cfg.patch_image_size / h
img = np.asarray(image)
coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg)
cv2.rectangle(
img,
(int(coord_list[0]), int(coord_list[1])),
(int(coord_list[2]), int(coord_list[3])),
(0, 255, 0),
3
)
return img, None
else:
return None, tokens
inputs = [gr.inputs.Image(type='pil'), gr.inputs.Radio(choices=['Image Captioning',"Visual Question Answering", "Visual Grounding", "General"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = [gr.outputs.Image(type='pil'), 'text']
examples = [
['examples/pokemons.jpeg', 'Image Captioning', None],
['examples/cats.jpeg', 'Visual Question Answering', 'where are the cats?'],
['examples/one_piece.jpeg', 'Visual Grounding', 'a man in a straw hat and a red dress'],
['examples/three_houses.jpeg', 'General', 'which region does the text " a grey car " describe?'],
['examples/three_houses.jpeg', 'General', 'what color is the left car?']
]
title = "OFA"
description = "Gradio Demo for OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework"
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |