File size: 14,312 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.

import math
from dataclasses import dataclass, field
from typing import Optional

import torch
import torch.nn.functional as F
import numpy as np
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II


@dataclass
class AdjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
    label_smoothing: float = field(
        default=0.0,
        metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
    )
    report_accuracy: bool = field(
        default=False,
        metadata={"help": "report accuracy metric"},
    )
    ignore_prefix_size: int = field(
        default=0,
        metadata={"help": "Ignore first N tokens"},
    )
    ignore_eos: bool = field(
        default=False,
        metadata={"help": "Ignore eos token"},
    )
    sentence_avg: bool = II("optimization.sentence_avg")
    drop_worst_ratio: float = field(
        default=0.0,
        metadata={"help": "ratio for discarding bad samples"},
    )
    drop_worst_after: int = field(
        default=0,
        metadata={"help": "steps for discarding bad samples"},
    )
    use_rdrop: bool = field(
        default=False, metadata={"help": "use R-Drop"}
    )
    reg_alpha: float = field(
        default=1.0, metadata={"help": "weight for R-Drop"}
    )
    sample_patch_num: int = field(
        default=196, metadata={"help": "sample patches for v1"}
    )
    constraint_range: Optional[str] = field(
        default=None,
        metadata={"help": "constraint range"}
    )


def construct_rdrop_sample(x):
    if isinstance(x, dict):
        for key in x:
            x[key] = construct_rdrop_sample(x[key])
        return x
    elif isinstance(x, torch.Tensor):
        return x.repeat(2, *([1] * (x.dim()-1)))
    elif isinstance(x, int):
        return x * 2
    elif isinstance(x, np.ndarray):
        return x.repeat(2)
    else:
        raise NotImplementedError


def kl_loss(p, q):
    p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
    q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
    loss = (p_loss + q_loss) / 2
    return loss


def label_smoothed_nll_loss(
        lprobs, target, epsilon, update_num, reduce=True,
        drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
        constraint_masks=None, constraint_start=None, constraint_end=None
):
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
    if constraint_masks is not None:
        smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
        eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
    elif constraint_start is not None and constraint_end is not None:
        constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
        smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
        eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
    else:
        smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
        eps_i = epsilon / (lprobs.size(-1) - 1)
    loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
    if drop_worst_ratio > 0 and update_num > drop_worst_after:
        if use_rdrop:
            true_batch_size = loss.size(0) // 2
            _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
            loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
            nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
            lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
        else:
            loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
            nll_loss = nll_loss[indices]
            lprobs = lprobs[indices]

    ntokens = loss.numel()
    nll_loss = nll_loss.sum()
    loss = loss.sum()
    if use_rdrop:
        true_batch_size = lprobs.size(0) // 2
        p = lprobs[:true_batch_size]
        q = lprobs[true_batch_size:]
        if constraint_start is not None and constraint_end is not None:
            constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
            p = p[:, constraint_range]
            q = q[:, constraint_range]
        loss += kl_loss(p, q) * reg_alpha

    return loss, nll_loss, ntokens


@register_criterion(
    "adjust_label_smoothed_cross_entropy", dataclass=AdjustLabelSmoothedCrossEntropyCriterionConfig
)
class AdjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion):
    def __init__(
        self,
        task,
        sentence_avg,
        label_smoothing,
        ignore_prefix_size=0,
        ignore_eos=False,
        report_accuracy=False,
        drop_worst_ratio=0,
        drop_worst_after=0,
        use_rdrop=False,
        reg_alpha=1.0,
        sample_patch_num=196,
        constraint_range=None
    ):
        super().__init__(task)
        self.sentence_avg = sentence_avg
        self.eps = label_smoothing
        self.ignore_prefix_size = ignore_prefix_size
        self.ignore_eos = ignore_eos
        self.report_accuracy = report_accuracy
        self.drop_worst_ratio = drop_worst_ratio
        self.drop_worst_after = drop_worst_after
        self.use_rdrop = use_rdrop
        self.reg_alpha = reg_alpha
        self.sample_patch_num = sample_patch_num

        self.constraint_start = None
        self.constraint_end = None
        if constraint_range is not None:
            constraint_start, constraint_end = constraint_range.split(',')
            self.constraint_start = int(constraint_start)
            self.constraint_end = int(constraint_end)

    def forward(self, model, sample, update_num=0, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        if isinstance(sample, list):
            if self.sample_patch_num > 0:
                sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
            # change to support len(samples) > 2
            loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
            loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
            loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
            sample_size = 1
            logging_output = {
                "loss": loss.data,
                "loss_v1": loss_v1.data,
                "loss_v2": loss_v2.data,
                "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
                "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
                "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
                "sample_size": 1,
                "sample_size_v1": sample_size_v1,
                "sample_size_v2": sample_size_v2,
            }
            return loss, sample_size, logging_output

        if self.use_rdrop:
            construct_rdrop_sample(sample)

        net_output = model(**sample["net_input"])
        loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
        sample_size = (
            sample["target"].size(0) if self.sentence_avg else ntokens
        )
        logging_output = {
            "loss": loss.data,
            "nll_loss": nll_loss.data,
            "ntokens": sample["ntokens"],
            "nsentences": sample["nsentences"],
            "sample_size": sample_size,
        }
        if self.report_accuracy:
            n_correct, total = self.compute_accuracy(model, net_output, sample)
            logging_output["n_correct"] = utils.item(n_correct.data)
            logging_output["total"] = utils.item(total.data)

        return loss, sample_size, logging_output

    def get_lprobs_and_target(self, model, net_output, sample):
        conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
        constraint_masks = None
        if "constraint_masks" in sample and sample["constraint_masks"] is not None:
            constraint_masks = sample["constraint_masks"]
            net_output[0].masked_fill_(~constraint_masks, -math.inf)
        if self.constraint_start is not None and self.constraint_end is not None:
            net_output[0][:, :, 4:self.constraint_start] = -math.inf
            net_output[0][:, :, self.constraint_end:] = -math.inf
        lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
        target = model.get_targets(sample, net_output)
        if self.ignore_prefix_size > 0:
            lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
            target = target[:, self.ignore_prefix_size :].contiguous()
            if constraint_masks is not None:
                constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
        if self.ignore_eos:
            bsz, seq_len, embed_dim = lprobs.size()
            eos_indices = target.eq(self.task.tgt_dict.eos())
            lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
            target = target[~eos_indices].reshape(bsz, seq_len-1)
            if constraint_masks is not None:
                constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
        if constraint_masks is not None:
            constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
        return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks

    def compute_loss(self, model, net_output, sample, update_num, reduce=True):
        lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
        if constraint_masks is not None:
            constraint_masks = constraint_masks[target != self.padding_idx]
        # print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
        lprobs = lprobs[target != self.padding_idx]
        target = target[target != self.padding_idx]
        loss, nll_loss, ntokens = label_smoothed_nll_loss(
            lprobs,
            target,
            self.eps,
            update_num,
            reduce=reduce,
            drop_worst_ratio=self.drop_worst_ratio,
            drop_worst_after=self.drop_worst_after,
            use_rdrop=self.use_rdrop,
            reg_alpha=self.reg_alpha,
            constraint_masks=constraint_masks,
            constraint_start=self.constraint_start,
            constraint_end=self.constraint_end
        )
        return loss, nll_loss, ntokens

    def compute_accuracy(self, model, net_output, sample):
        lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
        mask = target.ne(self.padding_idx)
        n_correct = torch.sum(
            lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
        )
        total = torch.sum(mask)
        return n_correct, total

    @classmethod
    def reduce_metrics(cls, logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
        loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
        nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
        sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
        sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)

        metrics.log_scalar(
            "loss", loss_sum / sample_size, sample_size, round=3
        )
        metrics.log_scalar(
            "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
        )
        metrics.log_scalar(
            "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
        )
        metrics.log_scalar(
            "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
        )
        metrics.log_derived(
            "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
        )

        metrics.log_scalar(
            "ntokens", ntokens, 1, round=3
        )
        metrics.log_scalar(
            "nsentences", nsentences, 1, round=3
        )
        metrics.log_scalar(
            "sample_size", sample_size, 1, round=3
        )
        metrics.log_scalar(
            "sample_size_v1", sample_size_v1, 1, round=3
        )
        metrics.log_scalar(
            "sample_size_v2", sample_size_v2, 1, round=3
        )

        total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
        if total > 0:
            metrics.log_scalar("total", total)
            n_correct = utils.item(
                sum(log.get("n_correct", 0) for log in logging_outputs)
            )
            metrics.log_scalar("n_correct", n_correct)
            metrics.log_derived(
                "accuracy",
                lambda meters: round(
                    meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
                )
                if meters["total"].sum > 0
                else float("nan"),
            )

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return True