File size: 4,906 Bytes
26fd00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import json
import os
import tempfile
import unittest
from io import StringIO

import torch

from . import test_binaries


class TestReproducibility(unittest.TestCase):
    def _test_reproducibility(
        self,
        name,
        extra_flags=None,
        delta=0.0001,
        resume_checkpoint="checkpoint1.pt",
        max_epoch=3,
    ):
        def get_last_log_stats_containing_string(log_records, search_string):
            for log_record in logs.records[::-1]:
                if isinstance(log_record.msg, str) and search_string in log_record.msg:
                    return json.loads(log_record.msg)

        if extra_flags is None:
            extra_flags = []

        with tempfile.TemporaryDirectory(name) as data_dir:
            with self.assertLogs() as logs:
                test_binaries.create_dummy_data(data_dir)
                test_binaries.preprocess_translation_data(data_dir)

            # train epochs 1 and 2 together
            with self.assertLogs() as logs:
                test_binaries.train_translation_model(
                    data_dir,
                    "fconv_iwslt_de_en",
                    [
                        "--dropout",
                        "0.0",
                        "--log-format",
                        "json",
                        "--log-interval",
                        "1",
                        "--max-epoch",
                        str(max_epoch),
                    ]
                    + extra_flags,
                )
            train_log = get_last_log_stats_containing_string(logs.records, "train_loss")
            valid_log = get_last_log_stats_containing_string(logs.records, "valid_loss")

            # train epoch 2, resuming from previous checkpoint 1
            os.rename(
                os.path.join(data_dir, resume_checkpoint),
                os.path.join(data_dir, "checkpoint_last.pt"),
            )
            with self.assertLogs() as logs:
                test_binaries.train_translation_model(
                    data_dir,
                    "fconv_iwslt_de_en",
                    [
                        "--dropout",
                        "0.0",
                        "--log-format",
                        "json",
                        "--log-interval",
                        "1",
                        "--max-epoch",
                        str(max_epoch),
                    ]
                    + extra_flags,
                )
            train_res_log = get_last_log_stats_containing_string(
                logs.records, "train_loss"
            )
            valid_res_log = get_last_log_stats_containing_string(
                logs.records, "valid_loss"
            )

            for k in ["train_loss", "train_ppl", "train_num_updates", "train_gnorm"]:
                self.assertAlmostEqual(
                    float(train_log[k]), float(train_res_log[k]), delta=delta
                )
            for k in [
                "valid_loss",
                "valid_ppl",
                "valid_num_updates",
                "valid_best_loss",
            ]:
                self.assertAlmostEqual(
                    float(valid_log[k]), float(valid_res_log[k]), delta=delta
                )

    def test_reproducibility(self):
        self._test_reproducibility("test_reproducibility")

    @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
    def test_reproducibility_fp16(self):
        self._test_reproducibility(
            "test_reproducibility_fp16",
            [
                "--fp16",
                "--fp16-init-scale",
                "4096",
            ],
            delta=0.011,
        )

    @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
    def test_reproducibility_memory_efficient_fp16(self):
        self._test_reproducibility(
            "test_reproducibility_memory_efficient_fp16",
            [
                "--memory-efficient-fp16",
                "--fp16-init-scale",
                "4096",
            ],
        )

    @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
    def test_reproducibility_amp(self):
        self._test_reproducibility(
            "test_reproducibility_amp",
            [
                "--amp",
                "--fp16-init-scale",
                "4096",
            ],
            delta=0.011,
        )

    def test_mid_epoch_reproducibility(self):
        self._test_reproducibility(
            "test_mid_epoch_reproducibility",
            ["--save-interval-updates", "3"],
            resume_checkpoint="checkpoint_1_3.pt",
            max_epoch=1,
        )


if __name__ == "__main__":
    unittest.main()